MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Steady accretion of an elastic body on a hard spherical surface and the notion of a four-dimensional reference space

Author(s)
Tomassetti, Giuseppe; Cohen, Tal; Abeyaratne, Rohan
Thumbnail
DownloadAbeyarante_Steady accretion.pdf (1.223Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Taking the cue from experiments on actin growth on spherical beads, we formulate and solve a model problem describing the accretion of an incompressible elastic solid on a rigid sphere due to attachment of diffusing free particles. One of the peculiar characteristics of this problem is that accretion takes place on the interior surface that separates the body from its support rather than on its exterior surface, and hence is responsible for stress accumulation. Simultaneously, ablation takes place at the outer surface where material is removed from the body. As the body grows, mechanical effects associated with the build-up of stress and strain energy slow down accretion and promote ablation. Eventually, the system reaches a point where internal accretion is balanced by external ablation. The present study is concerned with this stationary regime called “treadmilling”. The principal ingredients of our model are: a nonstandard choice of the reference configuration, which allows us to cope with the continually evolving material structure; and a driving force and a kinetic law for accretion/ablation that involves the difference in chemical potential, strain energy and the radial stress. By combining these ingredients we arrive at an algebraic system which governs the stationary treadmilling state. We establish the conditions under which this system has a solution and we show that this solution is unique. Moreover, by an asymptotic analysis we show that for small beads the thickness of the solid is proportional to the radius of the support and is strongly affected by the stiffness of the solid, whereas for large beads the stiffness of the solid is essentially irrelevant, the thickness being proportional to a characteristic length that depends on the parameters that govern diffusion and accretion kinetics.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/119463
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of the Mechanics and Physics of Solids
Publisher
Elsevier BV
Citation
Tomassetti, Giuseppe, Tal Cohen, and Rohan Abeyaratne. “Steady Accretion of an Elastic Body on a Hard Spherical Surface and the Notion of a Four-Dimensional Reference Space.” Journal of the Mechanics and Physics of Solids 96 (November 2016): 333–352. © 2016 Elsevier Ltd
Version: Author's final manuscript
ISSN
0022-5096

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.