MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota

Author(s)
Bullock, Kevin; Allegretti, Jessica R.; Clish, Clary B.; Kearney, Sean M; Gibbons, Sean Michael; Poyet, Mathilde; Gurry, Thomas Jerome; Alm, Eric J; ... Show more Show less
Thumbnail
Download221713.full.pdf (1007.Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Endospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endospores in situ and how sporulation varies across individuals and over time. Here we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.
Date issued
2018-06
URI
http://hdl.handle.net/1721.1/119495
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
ISME Journal
Publisher
Nature Publishing Group
Citation
Kearney, Sean M. et al. “Endospores and Other Lysis-Resistant Bacteria Comprise a Widely Shared Core Community Within the Human Microbiota.” The ISME Journal 12, 10 (June 2018): 2403–2416 © 2018 International Society for Microbial Ecology
Version: Original manuscript
ISSN
1751-7362
1751-7370

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.