Show simple item record

dc.contributor.authorYan, Fei
dc.contributor.authorKrantz, Philip Johan Erik
dc.contributor.authorSung, Youngkyu
dc.contributor.authorKjaergaard, Morten
dc.contributor.authorCampbell, Daniel Lawrence
dc.contributor.authorOrlando, Terry Philip
dc.contributor.authorGustavsson, Simon
dc.contributor.authorOliver, William D
dc.date.accessioned2018-12-11T19:54:46Z
dc.date.available2018-12-11T19:54:46Z
dc.date.issued2018-11
dc.date.submitted2018-07
dc.identifier.issn2331-7019
dc.identifier.urihttp://hdl.handle.net/1721.1/119507
dc.description.abstractThe prospect of computational hardware with quantum advantage relies critically on the quality of quantum-gate operations. Imperfect two-qubit gates are a major bottleneck for achieving scalable quantum-information processors. Here, we propose a generalizable and extensible scheme for a two-qubit tunable coupler that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is noninvasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies.en_US
dc.description.sponsorshipUnited States. Department of Defense. Assistant Secretary of Defense for Research & Engineering (Lincoln Laboratory. Contract FA8721-05-C-0002)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-14-1-0682)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant PHY-1720311)en_US
dc.description.sponsorshipKorea Foundation for Advanced Studiesen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevApplied.10.054062en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleTunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gatesen_US
dc.typeArticleen_US
dc.identifier.citationYan, Fei, et al. “Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates.” Physical Review Applied, vol. 10, no. 5, Nov. 2018.en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorYan, Fei
dc.contributor.mitauthorKrantz, Philip Johan Erik
dc.contributor.mitauthorSung, Youngkyu
dc.contributor.mitauthorKjaergaard, Morten
dc.contributor.mitauthorCampbell, Daniel Lawrence
dc.contributor.mitauthorOrlando, Terry Philip
dc.contributor.mitauthorGustavsson, Simon
dc.contributor.mitauthorOliver, William D
dc.relation.journalPhysical Review Applieden_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-28T18:00:14Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsYan, Fei; Krantz, Philip; Sung, Youngkyu; Kjaergaard, Morten; Campbell, Daniel L.; Orlando, Terry P.; Gustavsson, Simon; Oliver, William D.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4674-2806
dc.identifier.orcidhttps://orcid.org/0000-0002-8553-3353
dc.identifier.orcidhttps://orcid.org/0000-0002-4436-6886
dc.identifier.orcidhttps://orcid.org/0000-0002-7069-1025
dc.identifier.orcidhttps://orcid.org/0000-0001-8041-0824
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record