Show simple item record

dc.contributor.authorRonceray, Pierre
dc.contributor.authorLenz, Martin
dc.contributor.authorBroedersz, Chase P.
dc.contributor.authorhan, yulong
dc.contributor.authorXu, Guoqiang
dc.contributor.authorGuo, Ming
dc.contributor.authorMalandrino, Andrea
dc.contributor.authorKamm, Roger Dale
dc.date.accessioned2018-12-13T20:54:11Z
dc.date.available2018-12-13T20:54:11Z
dc.date.issued2018-03
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/119644
dc.description.abstractAnimal cells in tissues are supported by biopolymer matrices, which typically exhibit highly nonlinear mechanical properties. While the linear elasticity of the matrix can significantly impact cell mechanics and functionality, it remains largely unknown how cells, in turn, affect the nonlinear mechanics of their surrounding matrix. Here, we show that living contractile cells are able to generate a massive stiffness gradient in three distinct 3D extracellular matrix model systems: collagen, fibrin, and Matrigel. We decipher this remarkable behavior by introducing nonlinear stress inference microscopy (NSIM), a technique to infer stress fields in a 3D matrix from nonlinear microrheology measurements with optical tweezers. Using NSIM and simulations, we reveal large long-ranged cell-generated stresses capable of buckling filaments in the matrix. These stresses give rise to the large spatial extent of the observed cell-induced matrix stiffness gradient, which can provide a mechanism for mechanical communication between cells.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant 1U01CA202123)en_US
dc.description.sponsorshipMIT-Germany Seed Funden_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.publisherProceedings of the National Academy of Sciencesen_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1722619115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleCell contraction induces long-ranged stress stiffening in the extracellular matrixen_US
dc.typeArticleen_US
dc.identifier.citationHan, Yu Long, Pierre Ronceray, Guoqiang Xu, Andrea Malandrino, Roger D. Kamm, Martin Lenz, Chase P. Broedersz, and Ming Guo. “Cell Contraction Induces Long-Ranged Stress Stiffening in the Extracellular Matrix.” Proceedings of the National Academy of Sciences 115, no. 16 (April 4, 2018): 4075–4080. © 2018 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorhan, yulong
dc.contributor.mitauthorXu, Guoqiang
dc.contributor.mitauthorGuo, Ming
dc.contributor.mitauthorMalandrino, Andrea
dc.contributor.mitauthorKamm, Roger Dale
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-12-04T15:45:26Z
dspace.orderedauthorsHan, Yu Long; Ronceray, Pierre; Xu, Guoqiang; Malandrino, Andrea; Kamm, Roger D.; Lenz, Martin; Broedersz, Chase P.; Guo, Mingen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9276-7772
dc.identifier.orcidhttps://orcid.org/0000-0002-0016-4158
dc.identifier.orcidhttps://orcid.org/0000-0002-7928-0951
dc.identifier.orcidhttps://orcid.org/0000-0002-7232-304X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record