Show simple item record

dc.contributor.authorWensing, Patrick M.
dc.contributor.authorKim, Sangbae
dc.contributor.authorSlotine, Jean-Jacques E
dc.date.accessioned2018-12-18T18:25:58Z
dc.date.available2018-12-18T18:25:58Z
dc.date.issued2017-07
dc.identifier.issn2377-3766
dc.identifier.issn2377-3774
dc.identifier.urihttp://hdl.handle.net/1721.1/119687
dc.description.abstractWith the increased application of model-based whole-body control in legged robots, there has been a resurgence of research interest into methods for accurate system identification. An important class of methods focuses on the inertialparameters of rigid-body systems. These parameters consist of the mass, first mass moment (related to center of mass location), and rotational inertia matrix of each link. The main contribution of this letter is to formulate physical-consistency constraints on these parameters as Linear Matrix Inequalities (LMIs). The use of these constraints in identification can accelerate convergence and increase robustness to noisy data. It is critically observed that the proposed LMIs are expressed in terms of the covariance of the mass distribution, rather than its rotational moments of inertia. With this perspective, connections to the classical problem of moments in mathematics are shown to yield new bounding-volume constraints on the mass distribution of each link. While previous work ensured physical plausibility or used convex optimization in identification, the LMIs here uniquely enable both advantages. Constraints are applied to identification of a leg for the MIT Cheetah 3 robot. Detailed properties of transmission components are identified alongside link inertias, with parameter optimization carried out to global optimality through semidefinite programming.en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/LRA.2017.2729659en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLinear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distributionen_US
dc.typeArticleen_US
dc.identifier.citationWensing, Patrick M., Sangbae Kim, and Jean-Jacques E. Slotine. “Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution.” IEEE Robotics and Automation Letters 3, no. 1 (January 2018): 60–67.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorSlotine, Jean-Jacques E
dc.relation.journalIEEE Robotics and Automation Lettersen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-12-10T20:35:15Z
dspace.orderedauthorsWensing, Patrick M.; Kim, Sangbae; Slotine, Jean-Jacques E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7161-7812
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record