MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene

Author(s)
Isobe, Hiroki; Yuan, Noah F. Q.; Fu, Liang
Thumbnail
DownloadPhysRevX.8.041041.pdf (1018.Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0
Metadata
Show full item record
Abstract
We study electronic ordering instabilities of twisted bilayer graphene around the filling of n=2 electrons per supercell, where correlated insulator state and superconductivity have been recently observed. Motivated by the Fermi surface nesting and the proximity to Van Hove singularity, we introduce a hot-spot model to study the effect of various electron interactions systematically. Using the renormalization group method, we find that d or p-wave superconductivity and charge or spin density wave emerge as the two types of leading instabilities driven by Coulomb repulsion. The density-wave state has a gapped energy spectrum around n=2 and yields a single doubly degenerate pocket upon doping to n>2. The intertwinement of density wave and superconductivity and the quasiparticle spectrum in the density-wave state are consistent with experimental observations. Subject Areas: Condensed Matter Physics, Superconductivity
Date issued
2018-12
URI
http://hdl.handle.net/1721.1/119805
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review X
Publisher
American Physical Society
Citation
Isobe, Hiroki, et al. “Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene.” Physical Review X, vol. 8, no. 4, Dec. 2018. © 2018 American Physical Society
Version: Final published version
ISSN
2160-3308

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.