MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional Control of Network Dynamics Using Designed Laplacian Spectra

Author(s)
Woodhouse, Francis G.; Forrow, Aden; Dunkel, Joern
Thumbnail
DownloadPhysRevX.8.041043.pdf (5.662Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0
Metadata
Show full item record
Abstract
Complex real-world phenomena across a wide range of scales, from aviation and Internet traffic to signal propagation in electronic and gene regulatory circuits, can be efficiently described through dynamic network models. In many such systems, the spectrum of the underlying graph Laplacian plays a key role in controlling the matter or information flow. Spectral graph theory has traditionally prioritized analyzing unweighted networks with specified adjacency properties. Here, we introduce a complementary framework, providing a mathematically rigorous weighted graph construction that exactly realizes any desired spectrum. We illustrate the broad applicability of this approach by showing how designer spectra can be used to control the dynamics of various archetypal physical systems. Specifically, we demonstrate that a strategically placed gap induces generalized chimera states in Kuramoto-type oscillator networks, tunes or suppresses pattern formation in a generic Swift-Hohenberg model, and leads to persistent localization in a discrete Gross-Pitaevskii quantum network. Our approach can be generalized to design continuous band gaps through periodic extensions of finite networks. Subject Areas: Complex Systems, Interdisciplinary Physics, Nonlinear Dynamics
Date issued
2018-12
URI
http://hdl.handle.net/1721.1/119811
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Physical Review X
Publisher
American Physical Society
Citation
Forrow, Aden, et al. “Functional Control of Network Dynamics Using Designed Laplacian Spectra.” Physical Review X, vol. 8, no. 4, Dec. 2018.
Version: Final published version
ISSN
2160-3308

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.