Show simple item record

dc.contributor.authorHuang, Mingjun
dc.contributor.authorFeng, Shuting
dc.contributor.authorZhang, Wenxu
dc.contributor.authorGiordano, Livia
dc.contributor.authorChen, Mao
dc.contributor.authorAmanchukwu, Chibueze V.
dc.contributor.authorAnandakathir, Robinson
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorJohnson, Jeremiah A.
dc.date.accessioned2018-12-21T13:58:05Z
dc.date.available2018-12-21T13:58:05Z
dc.date.issued2018-03
dc.date.submitted2017-12
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/119812
dc.description.abstractSolid-state electrolytes are attracting great interest for their applications in potentially safe and stable high-capacity energy storage technologies. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is widely used as a lithium ion source, especially in solid-state polymer electrolytes, due to its solubility and excellent chemical and electrochemical stability. Unfortunately, chemically inert LiTFSI cannot be easily modified to optimize its properties or allow for conjugation to other molecules, polymers, or substrates to prepare single-ion conducting polymer electrolytes. Chemical modifications of TFSI often Erode its advantageous properties. Herein, we introduce Fluorinated Aryl Sulfonimide Tagged (FAST) salts, which are derived from successive nucleophilic aromatic substitution (SNAr) reactions. Experimental studies and density functional theory calculations were used to assess the electrochemical oxidative stabilities, chemical stabilities, and degrees of ion dissociation of FAST salts as a function of their structures. FAST salts offer a platform for accessing functional sulfonimides without sacrificing many of the advantageous properties of TFSI.en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C7EE03509Hen_US
dc.rightsCreative Commons Attribution 3.0 Unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleFluorinated Aryl Sulfonimide Tagged (FAST) salts: modular synthesis and structure–property relationships for battery applicationsen_US
dc.typeArticleen_US
dc.identifier.citationHuang, Mingjun et al. “Fluorinated Aryl Sulfonimide Tagged (FAST) Salts: Modular Synthesis and Structure–property Relationships for Battery Applications.” Energy & Environmental Science 11, 5 (2018): 1326–1334 © 2018 The Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorHuang, Mingjun
dc.contributor.mitauthorFeng, Shuting
dc.contributor.mitauthorZhang, Wenxu
dc.contributor.mitauthorGiordano, Livia
dc.contributor.mitauthorChen, Mao
dc.contributor.mitauthorAmanchukwu, Chibueze V.
dc.contributor.mitauthorShao-Horn, Yang
dc.contributor.mitauthorJohnson, Jeremiah A.
dc.relation.journalEnergy & Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-12-06T14:09:31Z
dspace.orderedauthorsHuang, Mingjun; Feng, Shuting; Zhang, Wenxu; Giordano, Livia; Chen, Mao; Amanchukwu, Chibueze V.; Anandakathir, Robinson; Shao-Horn, Yang; Johnson, Jeremiah A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5630-7085
dc.identifier.orcidhttps://orcid.org/0000-0002-6879-9424
dc.identifier.orcidhttps://orcid.org/0000-0002-7374-8680
dc.identifier.orcidhttps://orcid.org/0000-0002-6573-1213
dc.identifier.orcidhttps://orcid.org/0000-0001-9157-6491
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record