MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models

Author(s)
Kurniawati, Hanna; Patrikalakis, Nicholas M
Thumbnail
Downloadwafr12_polDeform.pdf (412.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Motion planning under uncertainty that can efficiently take into account changes in the environment is critical for robots to operate reliably in our living spaces. Partially Observable Markov Decision Process (POMDP) provides a systematic and general framework for motion planning under uncertainty. Point-based POMDP has advanced POMDP planning tremendously over the past few years, enabling POMDP planning to be practical for many simple to moderately difficult robotics problems. However, when environmental changes alter the POMDP model, most existing POMDP planners recompute the solution from scratch, often wasting significant computational resources that have been spent for solving the original problem. In this paper, we propose a novel algorithm, called Point-Based Policy Transformation (PBPT), that solves the altered POMDP problem by transforming the solution of the original problem to accommodate changes in the problem. PBPT uses the point-based POMDP approach. It transforms the original solution by modifying the set of sampled beliefs that represents the belief space B, and then uses this new set of sampled beliefs to revise the original solution. Preliminary results indicate that PBPT generates a good policy for the altered POMDP model in a matter of minutes, while recomputing the policy using the fastest offline POMDP planner today fails to find a policy with similar quality after two hours of planning time, even when the policy for the original problem is reused as an initial policy. Keywords: Optimal Policy, Autonomous Underwater Vehicle, Reward Function, Good Policy State Trace
Date issued
2013
URI
http://hdl.handle.net/1721.1/119849
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Algorithmic Foundations of Robotics X
Publisher
Springer Nature America, Inc
Citation
Kurniawati, Hanna, and Nicholas M. Patrikalakis. “Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models.” Algorithmic Foundations of Robotics X (2013): 493–509.
Version: Author's final manuscript
ISBN
978-3-642-36278-1
978-3-642-36279-8
ISSN
1610-7438
1610-742X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.