MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microfluidic platform for characterizing TCR–pMHC interactions

Author(s)
Stockslager, Max Andrew; Hecht, Vivian Chaya; Hu, Kevin; Aranda-Michel, Edgar C.; Kimmerling, Robert John; Manalis, Scott R; Shaw, Josephine; Payer, Kristofor Robert; ... Show more Show less
Thumbnail
DownloadBIOMGB-000011-064103_1.pdf (1.466Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The physical characteristics of the T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interaction are known to play a central role in determining T cell function in the initial stages of the adaptive immune response. State-of-the-art assays can probe the kinetics of this interaction with single-molecularbond resolution, but this precision typically comes at the cost of low throughput, since the complexity of these measurements largely precludes "scaling up." Here, we explore the feasibility of detecting specific TCR-pMHC interactions by flowing T cells past immobilized pMHC and measuring the reduction in cell speed due to the mechanical force of the receptor-ligand interaction. To test this new fluidic measurement modality, we fabricated a microfluidic device in which pMHC-coated beads are immobilized in hydrodynamic traps along the length of a serpentine channel. As T cells flow past the immobilized beads, their change in speed is tracked via microscopy. We validated this approach using two model systems: primary CD8+ T cells from an OT-1 TCR transgenic mouse with beads conjugated with H-2Kb:SIINFEKL, and Jurkat T cells with beads conjugated with anti-CD3 and anti-CD28 antibodies.
Date issued
2017-11
URI
http://hdl.handle.net/1721.1/119858
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Microsystems Technology Laboratories; Koch Institute for Integrative Cancer Research at MIT
Journal
Biomicrofluidics
Publisher
AIP Publishing
Citation
Stockslager, Max A., Josephine Shaw Bagnall, Vivian C. Hecht, Kevin Hu, Edgar Aranda-Michel, Kristofor Payer, Robert J. Kimmerling, and Scott R. Manalis. “Microfluidic Platform for Characterizing TCR–pMHC Interactions.” Biomicrofluidics 11, no. 6 (November 2017): 064103.
Version: Final published version
ISSN
1932-1058

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.