Show simple item record

dc.contributor.authorYan, Jie
dc.contributor.authorYu, Yang
dc.contributor.authorKang, Jeon Woong
dc.contributor.authorTam, Zhi Yang
dc.contributor.authorXu, Shuoyu
dc.contributor.authorFong, Eliza Li Shan
dc.contributor.authorSingh, Surya Pratap
dc.contributor.authorSong, Ziwei
dc.contributor.authorTucker-Kellogg, Lisa
dc.contributor.authorSo, Peter T. C.
dc.contributor.authorYu, Hanry
dc.date.accessioned2019-01-08T17:51:51Z
dc.date.available2019-01-08T17:51:51Z
dc.date.issued2017-06
dc.identifier.issn1864063X
dc.identifier.urihttp://hdl.handle.net/1721.1/119875
dc.description.abstractNon-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in developed countries [1]. A subset of individuals with NAFLD progress to non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD which predisposes individuals to cirrhosis, liver failure and hepatocellular carcinoma. The current gold standard for NASH diagnosis and staging is based on histological evaluation, which is largely semi-quantitative and subjective. To address the need for an automated and objective approach to NASH detection, we combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established NASH mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression. By employing a selected pool of biochemical components, we identified biochemical changes specific to NASH and show that the classification model is capable of accurately detecting NASH (AUC=0.85–0.87) in mice. The unique biochemical fingerprint generated in this study may serve as a useful criterion to be leveraged for further validation in clinical samples.en_US
dc.description.sponsorshipSingapore. National Research Foundation (under its CREATE programme)en_US
dc.description.sponsorshipSingapore-MIT Alliance. BioSystems and Micromechanics (BioSyM) Inter-Disciplinary Research Groupen_US
dc.description.sponsorshipSingapore. Agency for Science, Technology and Research (Project Number 1334i00051)en_US
dc.description.sponsorshipSingapore. National Medical Research Council (R-185-000-294-511)en_US
dc.description.sponsorshipNational University of Singapore. Mechanobiology Institute (R-714-001-003-271)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (9P41EB015871-28)en_US
dc.description.sponsorshipSamsung Advanced Institute of Technologyen_US
dc.description.sponsorshipSingapore. National Medical Research Council (Open Fund Individual Research Grant scheme (OFIRG15nov062)en_US
dc.publisherWileyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/JBIO.201600303en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleDevelopment of a classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationYan, Jie, Yang Yu, Jeon Woong Kang, Zhi Yang Tam, Shuoyu Xu, Eliza Li Shan Fong, Surya Pratap Singh, et al. “Development of a Classification Model for Non-Alcoholic Steatohepatitis (NASH) Using Confocal Raman Micro-Spectroscopy.” Journal of Biophotonics 10, no. 12 (June 21, 2017): 1703–1713.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Spectroscopy Laboratoryen_US
dc.contributor.mitauthorYu, Yang
dc.contributor.mitauthorKang, Jeon Woong
dc.contributor.mitauthorXu, Shuoyu
dc.contributor.mitauthorSingh, Surya Pratap
dc.contributor.mitauthorSong, Ziwei
dc.contributor.mitauthorTucker-Kellogg, Lisa
dc.contributor.mitauthorSo, Peter T. C.
dc.contributor.mitauthorYu, Hanry
dc.relation.journalJournal of Biophotonicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-04T13:22:55Z
dspace.orderedauthorsYan, Jie; Yu, Yang; Kang, Jeon Woong; Tam, Zhi Yang; Xu, Shuoyu; Fong, Eliza Li Shan; Singh, Surya Pratap; Song, Ziwei; Tucker-Kellogg, Lisa; So, Peter T. C.; Yu, Hanryen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2012-9023
dc.identifier.orcidhttps://orcid.org/0000-0003-4698-6488
dc.identifier.orcidhttps://orcid.org/0000-0002-0339-3685
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record