Show simple item record

dc.contributor.authorYu, Yang
dc.contributor.authorWang, Jiahao
dc.contributor.authorNg, Chan Way
dc.contributor.authorMa, Yukun
dc.contributor.authorMo, Shupei
dc.contributor.authorFong, Eliza Li Shan
dc.contributor.authorXing, Jiangwa
dc.contributor.authorSong, Ziwei
dc.contributor.authorXie, Yufei
dc.contributor.authorSi, Ke
dc.contributor.authorWee, Aileen
dc.contributor.authorYu, Hanry
dc.contributor.authorWelsch, Roy E
dc.contributor.authorSo, Peter T. C.
dc.date.accessioned2019-01-09T17:45:52Z
dc.date.available2019-01-09T17:45:52Z
dc.date.issued2018-10
dc.date.submitted2018-02
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/119885
dc.description.abstractCurrent liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85–0.95 versus ANN (AUROC of up to 0.87–1.00), MLR (AUROC of up to 0.73–1.00), SVM (AUROC of up to 0.69–0.99) and RF (AUROC of up to 0.94–0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41598-018-34300-2en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDeep learning enables automated scoring of liver fibrosis stagesen_US
dc.typeArticleen_US
dc.identifier.citationYu, Yang, Jiahao Wang, Chan Way Ng, Yukun Ma, Shupei Mo, Eliza Li Shan Fong, Jiangwa Xing, et al. “Deep Learning Enables Automated Scoring of Liver Fibrosis Stages.” Scientific Reports 8, no. 1 (October 30, 2018). © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorWelsch, Roy E
dc.contributor.mitauthorSo, Peter T. C.
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-04T14:53:47Z
dspace.orderedauthorsYu, Yang; Wang, Jiahao; Ng, Chan Way; Ma, Yukun; Mo, Shupei; Fong, Eliza Li Shan; Xing, Jiangwa; Song, Ziwei; Xie, Yufei; Si, Ke; Wee, Aileen; Welsch, Roy E.; So, Peter T. C.; Yu, Hanryen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9038-1622
dc.identifier.orcidhttps://orcid.org/0000-0003-4698-6488
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record