Show simple item record

dc.contributor.authorFreifeld, Oren
dc.contributor.authorStraub, Julian
dc.contributor.authorRosman, Guy
dc.contributor.authorLeonard, John J
dc.contributor.authorFisher, John W
dc.date.accessioned2019-01-11T20:02:58Z
dc.date.available2019-01-11T20:02:58Z
dc.date.issued2017-02
dc.identifier.issn0162-8828
dc.identifier.issn2160-9292
dc.identifier.urihttp://hdl.handle.net/1721.1/120008
dc.description.abstractObjects and structures within man-made environments typically exhibit a high degree of organization in the form of orthogonal and parallel planes. Traditional approaches utilize these regularities via the restrictive, and rather local, Manhattan World (MW) assumption which posits that every plane is perpendicular to one of the axes of a single coordinate system. The aforementioned regularities are especially evident in the surface normal distribution of a scene where they manifest as orthogonally-coupled clusters. This motivates the introduction of the Manhattan-Frame (MF) model which captures the notion of an MW in the surface normals space, the unit sphere, and two probabilistic MF models over this space. First, for a single MF we propose novel real-time MAP inference algorithms, evaluate their performance and their use in drift-free rotation estimation. Second, to capture the complexity of real-world scenes at a global scale, we extend the MF model to a probabilistic mixture of Manhattan Frames (MMF). For MMF inference we propose a simple MAP inference algorithm and an adaptive Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hastings split/merge moves that let us infer the unknown number of mixture components. We demonstrate the versatility of the MMF model and inference algorithm across several scales of man-made environments.en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014- 11-1-06)en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TPAMI.2017.2662686en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleThe Manhattan Frame Model—Manhattan World Inference in the Space of Surface Normalsen_US
dc.typeArticleen_US
dc.identifier.citationStraub, Julian, Oren Freifeld, Guy Rosman, John J. Leonard, and John W. Fisher. “The Manhattan Frame Model—Manhattan World Inference in the Space of Surface Normals.” IEEE Transactions on Pattern Analysis and Machine Intelligence 40, no. 1 (January 1, 2018): 235–249.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorStraub, Julian
dc.contributor.mitauthorRosman, Guy
dc.contributor.mitauthorLeonard, John J
dc.contributor.mitauthorFisher, John W
dc.relation.journalIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-12-12T15:24:01Z
dspace.orderedauthorsStraub, Julian; Freifeld, Oren; Rosman, Guy; Leonard, John J.; Fisher, John W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2339-1262
dc.identifier.orcidhttps://orcid.org/0000-0002-9334-1706
dc.identifier.orcidhttps://orcid.org/0000-0002-8863-6550
dc.identifier.orcidhttps://orcid.org/0000-0003-4844-3495
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record