MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks

Author(s)
Vlachas, Pantelis R.; Byeon, Wonmin; Koumoutsakos, Petros; Wan, Zhong Yi; Sapsis, Themistoklis P.
Thumbnail
Download1802.07486.pdf (6.523Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We introduce a data-driven forecasting method for high-dimensional chaotic systems using long shortterm memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPS) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPS in short-Term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.
Date issued
2018-05
URI
http://hdl.handle.net/1721.1/120011
Journal
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
Publisher
The Royal Society
Citation
Vlachas, Pantelis R., Wonmin Byeon, Zhong Y. Wan, Themistoklis P. Sapsis, and Petros Koumoutsakos. “Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 474, no. 2213 (May 2018): 20170844. © 2018 The Authors
Version: Author's final manuscript
ISSN
1364-5021
1471-2946

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.