Show simple item record

dc.contributor.authorHanks, Daniel Frank
dc.contributor.authorLu, Zhengmao
dc.contributor.authorSircar, Jay
dc.contributor.authorSalamon, Todd R.
dc.contributor.authorAntao, Dion Savio
dc.contributor.authorBagnall, Kevin R.
dc.contributor.authorBarabadi, Banafsheh
dc.contributor.authorWang, Evelyn
dc.date.accessioned2019-01-14T15:47:52Z
dc.date.available2019-01-14T15:47:52Z
dc.date.issued2018-02
dc.date.submitted2018-01
dc.identifier.issn2055-7434
dc.identifier.urihttp://hdl.handle.net/1721.1/120022
dc.description.abstractHigh power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat fl ux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a micro fl uidic device for ultra-high heat fl ux dissipation using evaporation from a nanoporous silicon membrane. With ~100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fl uids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates ef fi cient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin fi lm platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor- ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fl uxes of 665 ± 74 W/cm² using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fi delity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid – vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an ef fi cient, high fl ux thermal management strategy over large areas for high-performance electronics.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. ICECool Fundamentals Programen_US
dc.publisherSpringer Nature America, Incen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41378-018-0004-7en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleNanoporous membrane device for ultra high heat flux thermal managementen_US
dc.typeArticleen_US
dc.identifier.citationHanks, Daniel F., Zhengmao Lu, Jay Sircar, Todd R. Salamon, Dion S. Antao, Kevin R. Bagnall, Banafsheh Barabadi, and Evelyn N. Wang. “Nanoporous Membrane Device for Ultra High Heat Flux Thermal Management.” Microsystems & Nanoengineering 4, no. 1 (February 26, 2018).en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorHanks, Daniel Frank
dc.contributor.mitauthorLu, Zhengmao
dc.contributor.mitauthorSircar, Jay
dc.contributor.mitauthorSalamon, Todd R.
dc.contributor.mitauthorAntao, Dion Savio
dc.contributor.mitauthorBagnall, Kevin R.
dc.contributor.mitauthorBarabadi, Banafsheh
dc.contributor.mitauthorWang, Evelyn
dc.relation.journalMicrosystems & Nanoengineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-10T17:23:01Z
dspace.orderedauthorsHanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8974-756X
dc.identifier.orcidhttps://orcid.org/0000-0002-5938-717X
dc.identifier.orcidhttps://orcid.org/0000-0001-8643-9281
dc.identifier.orcidhttps://orcid.org/0000-0003-4165-4732
dc.identifier.orcidhttps://orcid.org/0000-0002-5042-4819
dc.identifier.orcidhttps://orcid.org/0000-0003-0550-1739
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record