MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis and design of the dynamical stability of collective behavior in crowds

Author(s)
Mukovskiy, Albert; Giese, Martin A.; Slotine, Jean-Jacques E
Thumbnail
DownloadAnalysis_and_Design_of_the_Dynamical_Stability_of_.pdf (2.392Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The modeling of the dynamics of the collective behavior of multiple characters is a key problem in crowd animation. Collective behavior can be described by the solutions of large-scale nonlinear dynamical systems that describe the dynamical interaction of locomoting characters with highly nonlinear articulation dynamics. The design of the stability properties of such complex multi-component systems has been rarely studied in computer animation. We present an approach for the solution of this problem that is based on Contraction Theory, a novel framework for the analysis of the stability complex nonlinear dynamical systems. Using a learning-based realtime-capable architecture for the animation of crowds, we demonstrate the application of this novel approach for the stability design for the groups of characters that interact in various ways. The underlying dynamics specifies control rules for propagation speed and direction, and for the synchronization of the gait phases. Contraction theory is not only suitable for the derivation of conditions that guarantee global asymptotic stability, but also of minimal convergence rates. Such bounds permit to guarantee the temporal constraints for the order formation in self-organizing interactive crowds. Keywords: computer animation, crowd animation, coordination, distributed control, stability
Date issued
2011-01
URI
http://hdl.handle.net/1721.1/120047
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of WSCG
Publisher
University of West Bohemia
Citation
Mukovskiy, Albert, Jean-Jacques E. Slotine, and Martin A. Giese. "Analysis and design of the dynamical stability of collective behavior in crowds." Journal of WSCG, 19.1, 2011: 69-76.
Version: Author's final manuscript
ISSN
1213-6972

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.