MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New characteristic of quantum many-body chaotic systems

Author(s)
Dymarsky, Anatoly; Liu, Hong
Thumbnail
DownloadPhysRevE.99.010102.pdf (1.166Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
An isolated quantum system in a pure state may be perceived as thermal if only a substantially small fraction of all degrees of freedom is probed. We propose that in a quantum chaotic many-body system all states with sufficiently small energy fluctuations are approximately thermal. We refer to this hypothesis as canonical universality (CU). The CU hypothesis complements the eigenstate thermalization hypothesis which proposes that for chaotic systems individual energy eigenstates are thermal. Integrable and many-body localization systems do not satisfy CU. We provide theoretical and numerical evidence supporting the CU hypothesis.
Date issued
2019-01
URI
http://hdl.handle.net/1721.1/120068
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Physical Review E
Publisher
American Physical Society
Citation
Dymarsky, Anatoly and Hong Liu. "New characteristic of quantum many-body chaotic systems." Physical Review E 99, 1 (January 2019): 010102(R) © 2019 American Physical Society
Version: Final published version
ISSN
2470-0045
2470-0053

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.