dc.contributor.author | Nezich, Daniel | |
dc.contributor.author | Park, Yong Ju | |
dc.contributor.author | Sundaram, Suresh | |
dc.contributor.author | Li, Xin | |
dc.contributor.author | Yue, Ruoyu | |
dc.contributor.author | Zhou, Guanyu | |
dc.contributor.author | Ahn, Jong-Hyun | |
dc.contributor.author | Ougazzaden, Abdallah | |
dc.contributor.author | Shim, Jaewoo | |
dc.contributor.author | Bae, Sanghoon | |
dc.contributor.author | Kong, Wei | |
dc.contributor.author | Lee, DoYoon | |
dc.contributor.author | Qiao, Kuan | |
dc.contributor.author | Zhao, Ruike | |
dc.contributor.author | Yeon, Hanwool | |
dc.contributor.author | Choi, Chanyeol | |
dc.contributor.author | Kum, Hyunseong | |
dc.contributor.author | Ou, Yunbo | |
dc.contributor.author | Lee, Kyusang | |
dc.contributor.author | Moodera, Jagadeesh | |
dc.contributor.author | Zhao, Xuanhe | |
dc.contributor.author | Hinkle, Christopher W. | |
dc.contributor.author | Kim, Jeehwan | |
dc.date.accessioned | 2019-01-16T16:55:47Z | |
dc.date.available | 2019-01-16T16:55:47Z | |
dc.date.issued | 2018-09 | |
dc.date.submitted | 2018-04 | |
dc.identifier.issn | 0036-8075 | |
dc.identifier.issn | 1095-9203 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/120086 | |
dc.description.abstract | No claim to original U.S. Government Works. Although flakes of two-dimensional (2D) heterostructures at the micrometer scale can be formed with adhesive-tape exfoliation methods, isolation of 2D flakes into monolayers is extremely time consuming because it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits high-throughput production of multiple monolayers of wafer-scale (5-centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer. Wafer-scale uniformity of hexagonal boron nitride, tungsten disulfide, tungsten diselenide, molybdenum disulfide, and molybdenum diselenide monolayers was verified by photoluminescence response and by substantial retention of electronic conductivity. We fabricated wafer-scale van der Waals heterostructures, including field-effect transistors, with single-atom thickness resolution. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant CMMI-1825731) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant CMMI-1825256) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMR-1700137) | en_US |
dc.description.sponsorship | United States. Office of Naval Research (Grant N00014-16-1-2657) | en_US |
dc.publisher | American Association for the Advancement of Science (AAAS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1126/science.aat8126 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Shim, Jaewoo et al. “Controlled Crack Propagation for Atomic Precision Handling of Wafer-Scale Two-Dimensional Materials.” Science 362, 6415 (October 2018): 665–670 © 2018 The Authors | en_US |
dc.contributor.department | Lincoln Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Microsystems Technology Laboratories | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Plasma Science and Fusion Center | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | en_US |
dc.contributor.mitauthor | Shim, Jaewoo | |
dc.contributor.mitauthor | Bae, Sanghoon | |
dc.contributor.mitauthor | Kong, Wei | |
dc.contributor.mitauthor | Lee, DoYoon | |
dc.contributor.mitauthor | Qiao, Kuan | |
dc.contributor.mitauthor | Zhao, Ruike | |
dc.contributor.mitauthor | Yeon, Hanwool | |
dc.contributor.mitauthor | Choi, Chanyeol | |
dc.contributor.mitauthor | Kum, Hyunseong | |
dc.contributor.mitauthor | Ou, Yunbo | |
dc.contributor.mitauthor | Lee, Kyusang | |
dc.contributor.mitauthor | Moodera, Jagadeesh | |
dc.contributor.mitauthor | Zhao, Xuanhe | |
dc.contributor.mitauthor | Hinkle, Christopher W. | |
dc.contributor.mitauthor | Kim, Jeehwan | |
dc.relation.journal | Science | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2019-01-16T13:53:22Z | |
dspace.orderedauthors | Shim, Jaewoo; Bae, Sang-Hoon; Kong, Wei; Lee, Doyoon; Qiao, Kuan; Nezich, Daniel; Park, Yong Ju; Zhao, Ruike; Sundaram, Suresh; Li, Xin; Yeon, Hanwool; Choi, Chanyeol; Kum, Hyun; Yue, Ruoyu; Zhou, Guanyu; Ou, Yunbo; Lee, Kyusang; Moodera, Jagadeesh; Zhao, Xuanhe; Ahn, Jong-Hyun; Hinkle, Christopher; Ougazzaden, Abdallah; Kim, Jeehwan | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-9292-5267 | |
dc.identifier.orcid | https://orcid.org/0000-0002-9350-8756 | |
dc.identifier.orcid | https://orcid.org/0000-0002-2480-1211 | |
dc.identifier.orcid | https://orcid.org/0000-0001-5387-6186 | |
dc.identifier.orcid | https://orcid.org/0000-0002-1547-0967 | |
mit.license | OPEN_ACCESS_POLICY | en_US |