Show simple item record

dc.contributor.authorShamshery, Pulkit
dc.contributor.authorWinter, Amos G.
dc.date.accessioned2019-01-16T18:38:53Z
dc.date.available2019-01-16T18:38:53Z
dc.date.issued2017-12
dc.date.submitted2017-10
dc.identifier.issn1050-0472
dc.identifier.urihttp://hdl.handle.net/1721.1/120089
dc.description.abstractThis study presents the design and validation of on-line pressure-compensating (PC) drip irrigation emitters with a substantially lower minimum compensating inlet pressure (MCIP) than commercially available products. A reduced MCIP, or activation pressure, results in a drip irrigation system that can operate at a reduced pumping pressure, has lower power and energy requirements, requires a lower initial capital cost, and facilitates solar-powered irrigation systems. The technology presented herein can help spread drip irrigation to remote regions and contribute to reducing poverty, particularly in developing countries. The activation pressures of drip emitters at three flow rates were minimized using a genetic algorithm (GA)-based optimization method coupled with a recently published fluid-structure interaction analytical model of on-line PC drip emitter performance. The optimization took into account manufacturing constraints and the need to economically retrofit existing machines to manufacture new emitters. Optimized PC drip emitter designs with flow rates of 3.3, 4.2, and 8.2 lph were validated using precision machined prototype emitters. The activation pressure for all was ≤0.2 bar, which is as low as 16.7% that of commercial products. A limited production run of injection molded 8.2 lph dripper prototypes demonstrated they could be made with conventional manufacturing techniques. These drippers had an activation pressure of 0.15 bar. A cost analysis showed that low MCIP drip emitters can reduce the cost of solar-powered drip irrigation systems by up to 40%.en_US
dc.publisherASME Internationalen_US
dc.relation.isversionofhttp://dx.doi.org/10.1115/1.4038211en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceASMEen_US
dc.titleShape and Form Optimization of On-Line Pressure-Compensating Drip Emitters to Achieve Lower Activation Pressureen_US
dc.typeArticleen_US
dc.identifier.citationShamshery, Pulkit, and Amos G. Winter. “Shape and Form Optimization of On-Line Pressure-Compensating Drip Emitters to Achieve Lower Activation Pressure.” Journal of Mechanical Design 140, 3 (December 2017): 035001 © 2018 ASMEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorShamshery, Pulkit
dc.contributor.mitauthorWinter, Amos G.
dc.relation.journalJournal of Mechanical Designen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-11T15:42:12Z
dspace.orderedauthorsShamshery, Pulkit; Winter, Amos G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1944-5977
dc.identifier.orcidhttps://orcid.org/0000-0002-4151-0889
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record