Show simple item record

dc.contributor.authorGrange, Benjamin
dc.contributor.authorKumar, Vikas
dc.contributor.authorArmstrong, Peter R.
dc.contributor.authorCodd, Daniel S.
dc.contributor.authorCalvet, Nicolas
dc.contributor.authorGil Pujol, Antoni
dc.contributor.authorSlocum, Alexander H
dc.date.accessioned2019-01-24T14:52:56Z
dc.date.available2019-01-24T14:52:56Z
dc.date.issued2015-08
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/1721.1/120121
dc.description.abstractAn innovative concept in which a single-tank molten salt thermal energy storage arrangement also acts as a volumetric receiver is being developed in connection with the CSPonD[superscript 2] (Concentrated Solar Power on Demand Demonstration) project. The tank is located at the focal point of a beam-down tower to act as both solar energy receiver and thermal energy storage. The relatively small angle subtended by rays emanating from the central reflector of a beam down optical system, together with the nature of solar energy absorption within the volumetric receiver, make use of a compound parabolic concentrator (CPC) or CPC-like final optical element attractive. An effective concentration of about 4 can be achieved to increase solar flux at the tank aperture from 150 to 600 suns. This paper describes preliminary designs of the CPC and tank/receiver. Optical simulations reveal that, for a given solar incident power at the tank aperture, a conical final concentrator design produces a more uniform flux distribution with better axial alignment (lower average horizontal component) of rays at its outlet compared to a conventional CPC of revolution. However the cone may require a larger outlet radius, leading to higher thermal losses through the tank aperture. With the current design of the tank, the losses through the walls correspond to 5.5 % of the thermal capacity. To maximize the tank thermal efficiency, a thorough investigation will be carried out, starting with measurements of the molten salt emissivity, to determine the cone outlet radius/tank aperture and cone height that achieve maximum system efficiency with a 250-550 °C molten salt working temperature range. Keywords: Thermal energy storage; Concentrated solar power; Molten salt; Thermocline; Beam-down tower; CPC, Cone, Ray-tracing.en_US
dc.description.sponsorshipAbu Dhabi (United Arab Emirates)en_US
dc.description.sponsorshipMIT & Masdar Institute Cooperative Programen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.EGYPRO.2015.07.359en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titlePreliminary Optical, Thermal and Structural Design of a 100 kWth CSPonD Beam-down On-sun Demonstration Planten_US
dc.typeArticleen_US
dc.identifier.citationGrange, Benjamin, Vikas Kumar, Antoni Gil, Peter R. Armstrong, Daniel S. Codd, Alexander Slocum, and Nicolas Calvet. “Preliminary Optical, Thermal and Structural Design of a 100 kWth CSPonD Beam-down On-Sun Demonstration Plant.” Energy Procedia 75 (August 2015): 2163–2168. © 2015 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorGil Pujol, Antoni
dc.contributor.mitauthorSlocum, Alexander H
dc.relation.journalEnergy Procediaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-02T18:22:00Z
dspace.orderedauthorsGrange, Benjamin; Kumar, Vikas; Gil, Antoni; Armstrong, Peter R.; Codd, Daniel S.; Slocum, Alexander; Calvet, Nicolasen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4900-1317
dc.identifier.orcidhttps://orcid.org/0000-0002-5048-4109
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record