MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory

Author(s)
Meier, Christoph; Popp, Alexander; Wall, Wolfgang A.
Thumbnail
Download11831_2017_9232_ReferencePDF.pdf (2.042Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The present work focuses on geometrically exact finite elements for highly slender beams. It aims at the proposal of novel formulations of Kirchhoff–Love type, a detailed review of existing formulations of Kirchhoff–Love and Simo–Reissner type as well as a careful evaluation and comparison of the proposed and existing formulations. Two different rotation interpolation schemes with strong or weak Kirchhoff constraint enforcement, respectively, as well as two different choices of nodal triad parametrizations in terms of rotation or tangent vectors are proposed. The combination of these schemes leads to four novel finite element variants, all of them based on a C[superscript 1-continuous Hermite interpolation of the beam centerline. Essential requirements such as representability of general 3D, large deformation, dynamic problems involving slender beams with arbitrary initial curvatures and anisotropic cross-section shapes, preservation of objectivity and path-independence, consistent convergence orders, avoidance of locking effects as well as conservation of energy and momentum by the employed spatial discretization schemes, but also a range of practically relevant secondary aspects will be investigated analytically and verified numerically for the different formulations. It will be shown that the geometrically exact Kirchhoff–Love beam elements proposed in this work are the first ones of this type that fulfill all these essential requirements. On the contrary, Simo–Reissner type formulations fulfilling these requirements can be found in the literature very well. However, it will be argued that the shear-free Kirchhoff–Love formulations can provide considerable numerical advantages such as lower spatial discretization error levels, improved performance of time integration schemes as well as linear and nonlinear solvers and smooth geometry representation as compared to shear-deformable Simo–Reissner formulations when applied to highly slender beams. Concretely, several representative numerical test cases confirm that the proposed Kirchhoff–Love formulations exhibit a lower discretization error level as well as a considerably improved nonlinear solver performance in the range of high beam slenderness ratios as compared to two representative Simo–Reissner element formulations from the literature.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/120125
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Archives of Computational Methods in Engineering
Publisher
Springer Netherlands
Citation
Meier, Christoph, Alexander Popp, and Wolfgang A. Wall. “Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory.” Archives of Computational Methods in Engineering 26, no. 1 (July 3, 2017): 163–243.
Version: Author's final manuscript
ISSN
1134-3060
1886-1784

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.