MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of thin film evaporation in micropillar wicks using micro-Raman spectroscopy

Author(s)
Zhang, Lenan; Zhu, Yangying; Lu, Zhengmao; Zhao, Lin; Bagnall, Kevin R.; Rao, Sameer R; Wang, Evelyn; ... Show more Show less
Thumbnail
DownloadAPL10152018.pdf (1.686Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Thin film evaporation on microstructured surfaces is a promising strategy for high heat flux thermal management. To enhance fundamental understanding and optimize the overall heat transfer performance across a few microns thick liquid film, however, requires detailed thermal characterizations. Existing characterization techniques using infrared thermometry or contact-mode temperature sensors such as thermocouples and resistance temperature detectors cannot accurately measure the temperature of the thin liquid film near the three-phase contact line due to the restriction of low spatial resolution or temperature sensitivity. In this work, we developed a non-contact, in situ temperature measurement approach using a custom micro-Raman spectroscopy platform which has a spatial resolution of 1.5 μm and temperature sensitivity within 0.5 °C. We utilized this method to characterize thin film evaporation from fabricated silicon micropillar arrays. We showed that we can accurately measure the local thin film temperature and map the overall temperature distribution on the structured surfaces at different heat fluxes. We investigated the effects of micropillar array geometries and showed that the temperature rise of the liquid was reduced with the decreasing micropillar pitch due to the increased fraction of the thin film area. This work offers a promising method with micro-Raman to quantify phase change heat transfer on microstructured surfaces. This characterization technique can significantly aid mechanistic understanding and wick structure optimization for various phase-change based thermal management devices.
Date issued
2018-10
URI
http://hdl.handle.net/1721.1/120128
Department
Lincoln Laboratory; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Applied Physics Letters
Publisher
American Institute of Physics (AIP)
Citation
Zhang, Lenan, Yangying Zhu, Zhengmao Lu, Lin Zhao, Kevin R. Bagnall, Sameer R. Rao, and Evelyn N. Wang. “Characterization of Thin Film Evaporation in Micropillar Wicks Using Micro-Raman Spectroscopy.” Applied Physics Letters 113, no. 16 (October 15, 2018): 163701.
Version: Author's final manuscript
ISSN
0003-6951
1077-3118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.