Show simple item record

dc.contributor.authorSuksompong, Warut
dc.contributor.authorLeiserson, Charles E
dc.contributor.authorSchardl, Tao Benjamin
dc.date.accessioned2019-01-28T18:06:08Z
dc.date.available2019-01-28T18:06:08Z
dc.date.issued2015-10
dc.date.submitted2015-10
dc.identifier.issn0020-0190
dc.identifier.urihttp://hdl.handle.net/1721.1/120140
dc.description.abstractThis paper investigates a variant of the work-stealing algorithm that we call the localized work-stealing algorithm. The intuition behind this variant is that because of locality, processors can benefit from working on their own work. Consequently, when a processor is free, it makes a steal attempt to get back its own work. We call this type of steal a steal-back. We show that the expected running time of the algorithm is T[subscript 1]/P + O(T[subscript ∞]P), and that under the “even distribution of free agents assumption”, the expected running time of the algorithm is T[subscript 1]/P + O(T[subscript ∞]lgP) . In addition, we obtain another running-time bound based on ratios between the sizes of serial tasks in the computation. If M denotes the maximum ratio between the largest and the smallest serial tasks of a processor after removing a total of O(P) serial tasks across all processors from consideration, then the expected running time of the algorithm is T[subscript 1]/ P+ O(T[subscript ∞]M). Keywords: Parallel algorithms; Multihreaded computation; Work stealing; Localizationen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ipl.2015.10.002en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleOn the efficiency of localized work stealingen_US
dc.typeArticleen_US
dc.identifier.citationSuksompong, Warut et al. “On the Efficiency of Localized Work Stealing.” Information Processing Letters 116, 2 (February 2016): 100–106 © 2015 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLeiserson, Charles E
dc.contributor.mitauthorSchardl, Tao Benjamin
dc.relation.journalInformation Processing Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSuksompong, Warut; Leiserson, Charles E.; Schardl, Tao B.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6386-5552
dc.identifier.orcidhttps://orcid.org/0000-0003-0198-3283
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record