Show simple item record

dc.contributor.authorThaler, Jesse
dc.contributor.authorKomiske, Patrick T.
dc.contributor.authorMetodiev, Eric Mario
dc.date.accessioned2019-01-29T19:47:11Z
dc.date.available2019-01-29T19:47:11Z
dc.date.issued2019-01
dc.date.submitted2019-01
dc.identifier.issn1029-8479
dc.identifier.urihttp://hdl.handle.net/1721.1/120141
dc.description.abstractA key question for machine learning approaches in particle physics is how to best represent and learn from collider events. As an event is intrinsically a variable-length unordered set of particles, we build upon recent machine learning efforts to learn directly from sets of features or “point clouds”. Adapting and specializing the “Deep Sets” framework to particle physics, we introduce Energy Flow Networks, which respect infrared and collinear safety by construction. We also develop Particle Flow Networks, which allow for general energy dependence and the inclusion of additional particle-level information such as charge and flavor. These networks feature a per-particle internal (latent) representation, and summing over all particles yields an overall event-level latent representation. We show how this latent space decomposition unifies existing event representations based on detector images and radiation moments. To demonstrate the power and simplicity of this set-based approach, we apply these networks to the collider task of discriminating quark jets from gluon jets, finding similar or improved performance compared to existing methods. We also show how the learned event representation can be directly visualized, providing insight into the inner workings of the model. These architectures lend themselves to efficiently processing and analyzing events for a wide variety of tasks at the Large Hadron Collider. Implementations and examples of our architectures are available online in our EnergyFlow package. Keywords: Jets; QCD Phenomenologyen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP01(2019)121en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleEnergy flow networks: deep sets for particle jetsen_US
dc.typeArticleen_US
dc.identifier.citationKomiske, Patrick T. et al. "Energy flow networks: deep sets for particle jets." Journal of High Energy Physics 2019 (January 2019): 121 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.mitauthorKomiske, Patrick T.
dc.contributor.mitauthorMetodiev, Eric Mario
dc.relation.journalJournal of High Energy Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-19T04:55:44Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsKomiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesseen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record