Show simple item record

dc.contributor.authorKulesa, Anthony Benjamin
dc.contributor.authorKehe, Jared Scott
dc.contributor.authorHurtado, Juan E.
dc.contributor.authorTawde, Prianca K.
dc.contributor.authorBlainey, Paul C
dc.date.accessioned2019-02-08T16:38:01Z
dc.date.available2019-02-08T16:38:01Z
dc.date.issued2018-06
dc.date.submitted2018-02
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/120291
dc.description.abstractCombinatorial drug treatment strategies perturb biological networks synergistically to achieve therapeutic effects and represent major opportunities to develop advanced treatments across a variety of human disease areas. However, the discovery of new combinatorial treatments is challenged by the sheer scale of combinatorial chemical space. Here, we report a high-throughput system for nanoliter-scale phenotypic screening that formulates a chemical library in nanoliter droplet emulsions and automates the construction of chemical combinations en masse using parallel droplet processing. We applied this system to predict synergy between more than 4,000 investigational and approved drugs and a panel of 10 antibiotics against Escherichia coli, a model gram-negative pathogen. We found a range of drugs not previously indicated for infectious disease that synergize with antibiotics. Our validated hits include drugs that synergize with the antibiotics vancomycin, erythromycin, and novobiocin, which are used against gram-positive bacteria but are not effective by themselves to resolve gram-negative infections. Keywords: high-throughput screening; nanoliter droplet; drug synergy; antibiotics; small moleculesen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1802233115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleCombinatorial drug discovery in nanoliter dropletsen_US
dc.typeArticleen_US
dc.identifier.citationKulesa, Anthony et al. “Combinatorial Drug Discovery in Nanoliter Droplets.” Proceedings of the National Academy of Sciences 115, 26 (June 2018): 6685–6690 © 2018 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKulesa, Anthony Benjamin
dc.contributor.mitauthorKehe, Jared Scott
dc.contributor.mitauthorHurtado, Juan E.
dc.contributor.mitauthorTawde, Prianca K.
dc.contributor.mitauthorBlainey, Paul C
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-08T14:54:06Z
dspace.orderedauthorsKulesa, Anthony; Kehe, Jared; Hurtado, Juan E.; Tawde, Prianca; Blainey, Paul C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9927-9715
dc.identifier.orcidhttps://orcid.org/0000-0002-1028-5981
dc.identifier.orcidhttps://orcid.org/0000-0001-7014-3830
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record