MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engine Mount Design Strategies to Mitigate Linear Vibrations in a Tata Nano

Author(s)
Phadnis, Vrushank Shripad; Harris, Jimmie D.; Ding, Shile; Arambula Gonzalez, Chen Josue; Collins, Benjamin T.; Jeunnette, Mark; Winter, Amos G.; ... Show more Show less
Thumbnail
Downloadv003t01a042-detc2018-85834.pdf (1.514Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In 2009, Tata Motors launched the Tata Nano as a low-cost alternative to two and three-wheeled vehicles for India’s growing middle class. However, the Nano failed to meet these expectations as it developed a negative perception amongst Indian consumers partly due to its poor Noise Vibration Harshness (NVH) characteristics. In this paper, we examine strategies to reduce the transmission of linear vibrations from the engine felt inside the cabin. Specifically, it includes analysis of the hardness of damping rubber in the engine mounts as well as geometry of the engine mounts. The results of this analysis suggest that Tata Motors can reduce the vibrations transmitted from the engine by decreasing the hardness of the damping rubber. Additionally, Tata Motors can further reduce the transmitted vibrations by decreasing mount angle. It was found that a reduction in mount angle from 45° to 30° reduced the amplitude of the transmitted vibrations by 23%. Topics: Engines , Design , Linear vibration
Date issued
2018-08
URI
http://hdl.handle.net/1721.1/120300
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Sloan School of Management
Journal
Volume 3: 20th International Conference on Advanced Vehicle Technologies; 15th International Conference on Design Education
Publisher
American Society of Mechanical Engineers
Citation
Phadnis, Vrushank S., Jimmie Harris, Shile Ding, Chen Arambula, Ben Collins, Mark Jeunnette, and Amos Winter. “Engine Mount Design Strategies to Mitigate Linear Vibrations in a Tata Nano.” Volume 3: 20th International Conference on Advanced Vehicle Technologies; 15th International Conference on Design Education, 26-29 August, 2018, Quebec City, Quebec, Canada, ASME, 2018. © 2018 ASME. .
Version: Final published version
ISBN
978-0-7918-5178-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.