Show simple item record

dc.contributor.authorRoy, Yagnaseni
dc.contributor.authorLienhard, John H.
dc.date.accessioned2019-02-11T14:51:11Z
dc.date.available2019-02-11T14:51:11Z
dc.date.issued2019-01
dc.identifier.issn00119164
dc.identifier.urihttp://hdl.handle.net/1721.1/120312
dc.description.abstractThe selectivity of nanofiltration (NF) membranes is determined by membrane parameters as well as species mobilities (solute diffusivity and solvent viscosity). Changes in temperature affect each of these quantities, thereby altering membrane selectivity. To determine whether membrane parameters or mobilities primarily account for observed changes in permeate quality upon temperature increase, values of each property are either fitted from experimental data or calculated. Model validation with data from three feed compositions and two membranes reveals clear trends in temperature-dependent property-variation: pore size, net path length through membrane selective layer and negative membrane charge increase at higher temperature. An analytical approach is taken to explain the increase or decrease in permeate concentration due to each contributive factor, revealing the opposing effects of the two mobility factors. Modeling results further show that neither membrane parameter changes nor mobilities can alone explain selectivity changes with temperature. With increasing pressure, however, the net effect of membrane parameters increasingly overshadows that of the mobilities.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.desal.2018.12.017en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Lienharden_US
dc.titleFactors contributing to the change in permeate quality upon temperature variation in nanofiltrationen_US
dc.typeArticleen_US
dc.identifier.citationRoy, Yagnaseni, and John H. Lienhard. “Factors Contributing to the Change in Permeate Quality Upon Temperature Variation in Nanofiltration.” Desalination 455 (April 2019): 58–70.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverLienhard, John H.en_US
dc.contributor.mitauthorRoy, Yagnaseni
dc.contributor.mitauthorLienhard, John H.
dc.relation.journalDesalinationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRoy, Yagnaseni; Lienhard, John H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4144-7493
dc.identifier.orcidhttps://orcid.org/0000-0002-2901-0638
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record