MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radiative transfer in ocean turbulence and its effect on underwater light field

Author(s)
Guo, Xin; Xu, Zao; Shen, Lian; Yue, Dick K. P.
Thumbnail
Download8a4b0812aa72dd8aa7d6549129d781ad080a.pdf (1.174Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Turbulence in the upper ocean generates fluctuations in temperature and salinity, which result in variations in inherent optical properties (IOPs) and further change the underwater light field. A simulation-based study is performed for the radiative transfer (RT) of natural light in the turbulent flows in the upper ocean. For a canonical problem of turbulent shear flow interacting with the sea surface with and without surface waves, large-eddy simulations are performed for fluid motions and the transport of temperature and salinity. Based on the resolved turbulence temperature and salinity fields, IOP variations are quantified, and the inhomogeneous RT equation is then simulated using a Monte Carlo method. Through the simulations of a variety of cases with different flow, temperature, and salinity conditions, the statistics of downwelling irradiance are quantified and analyzed. It is found that the vertical profile of the mean downwelling irradiance is mainly determined by the vertical structure of the mean values of the IOPs; and turbulence effect is manifested in the horizontal variations of the downwelling irradiance. The magnitude of the irradiance variation is governed by the differences in the temperature and salinity between their values at the surface and in the deep region. In the presence of surface waves, the irradiance variation is enhanced due to the surface deformation, which is also largely affected by wave-turbulence interaction. The LES and inhomogeneous RT simulation may provide a useful tool for the characterization of upper-ocean turbulence processes based on underwater RT measurements.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/120314
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Ocean Engineering
Journal
Journal of Geophysical Research: Oceans
Publisher
American Geophysical Union (AGU)
Citation
Xu, Zao, Xin Guo, Lian Shen, and Dick K. P. Yue. “Radiative Transfer in Ocean Turbulence and Its Effect on Underwater Light Field.” Journal of Geophysical Research: Oceans 117, no. C7 (March 22, 2012): n/a–n/a.
Version: Final published version
ISSN
01480227

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.