MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Paleozoic diversification of terrestrial chitin-degrading bacterial lineages

Author(s)
Gruen, Danielle Sarah; Wolfe, Joanna Michelle; Fournier, Gregory P.
Thumbnail
Download12862_2019_Article_1357.pdf (1.948Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background Establishing the divergence times of groups of organisms is a major goal of evolutionary biology. This is especially challenging for microbial lineages due to the near-absence of preserved physical evidence (diagnostic body fossils or geochemical biomarkers). Horizontal gene transfer (HGT) can serve as a temporal scaffold between microbial groups and other fossil-calibrated clades, potentially improving these estimates. Specifically, HGT to or from organisms with fossil-calibrated age estimates can propagate these constraints to additional groups that lack fossils. While HGT is common between lineages, only a small subset of HGT events are potentially informative for dating microbial groups. Results Constrained by published fossil-calibrated studies of fungal evolution, molecular clock analyses show that multiple clades of Bacteria likely acquired chitinase homologs via HGT during the very late Neoproterozoic into the early Paleozoic. These results also show that, following these HGT events, recipient terrestrial bacterial clades likely diversified ~ 300–500 million years ago, consistent with established timescales of arthropod and plant terrestrialization. Conclusions We conclude that these age estimates are broadly consistent with the dispersal of chitinase genes throughout the microbial world in direct response to the evolution and ecological expansion of detrital-chitin producing groups. The convergence of multiple lines of evidence demonstrates the utility of HGT-based dating methods in microbial evolution. The pattern of inheritance of chitinase genes in multiple terrestrial bacterial lineages via HGT processes suggests that these genes, and possibly other genes encoding substrate-specific enzymes, can serve as a “standard candle” for dating microbial lineages across the Tree of Life. Keywords: Horizontal gene transfer; Chitinase; Chitin; Bacteria; Fungi; Arthropods
Date issued
2019-01
URI
http://hdl.handle.net/1721.1/120349
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Woods Hole Oceanographic Institution
Journal
BMC Evolutionary Biology
Publisher
BioMed Central
Citation
Gruen, Danielle S. et al. "Paleozoic diversification of terrestrial chitin-degrading bacterial lineages." BMC Evolutionary Biology 19 (January 2019): 34 © 2019 The Author(s)
Version: Final published version
ISSN
1471-2148

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.