Show simple item record

dc.contributor.authorBerggren, Karl K.
dc.contributor.authorYang, Yang
dc.contributor.authorShort, Michael P
dc.contributor.authorKim, Chungsoo
dc.contributor.authorLi, Ju
dc.contributor.authorLi, Yong Gang
dc.date.accessioned2019-02-13T18:08:17Z
dc.date.available2019-02-13T18:08:17Z
dc.date.issued2018-01
dc.date.submitted2017-10
dc.identifier.issn2040-3364
dc.identifier.issn2040-3372
dc.identifier.urihttp://hdl.handle.net/1721.1/120357
dc.description.abstractFull three dimensional (3D) simulations of ion implantation are necessary in a wide range of nanoscience and nanotechnology applications to capture the increasing effect of ion leakage out of surfaces. Using a recently developed 3D Monte Carlo simulation code IM3D, we first quantify the relative error of the 1D approach in three applications of nano-scale ion implantation: (1) nano-beam for nitrogen-vacancy (NV) center creation, (2) implantation of nanowires to fabricate p–n junctions, and (3) irradiation of nano-pillars for small-scale mechanical testing of irradiated materials. Because the 1D approach fails to consider the exchange and leakage of ions from boundaries, its relative error increases dramatically as the beam/target size shrinks. Lastly, the “Bragg peak” phenomenon, where the maximum radiation dose occurs at a finite depth away from the surface, relies on the assumption of broad beams. We discovered a topological transition of the point-defect or defect-cluster distribution isosurface when one varies the beam width, in agreement with a previous focused helium ion beam irradiation experiment. We conclude that full 3D simulations are necessary if either the beam or the target size is comparable or below the SRIM longitudinal ion range.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1120901)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (11475215)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (11775254)en_US
dc.description.sponsorshipGordon and Betty Moore Foundationen_US
dc.description.sponsorshipChinese Academy of Sciences. Youth Innovation Promotion Associationen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c7nr08116ben_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Shorten_US
dc.titleNano-beam and nano-target effects in ion radiationen_US
dc.typeArticleen_US
dc.identifier.citationYang, Yang, Yong Gang Li, Michael P. Short, Chung-Soo Kim, Karl K. Berggren, and Ju Li. “Nano-Beam and Nano-Target Effects in Ion Radiation.” Nanoscale 10, no. 4 (2018): 1598–1606.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverShort, Michael Philipen_US
dc.contributor.mitauthorYang, Yang
dc.contributor.mitauthorLi, Yonggang
dc.contributor.mitauthorShort, Michael P
dc.contributor.mitauthorKim, Chungsoo
dc.contributor.mitauthorLi, Ju
dc.relation.journalNanoscaleen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsYang, Yang; Li, Yong Gang; Short, Michael P.; Kim, Chung-Soo; Berggren, Karl K.; Li, Juen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0025-5914
dc.identifier.orcidhttps://orcid.org/0000-0002-9216-2482
dc.identifier.orcidhttps://orcid.org/0000-0002-8547-0639
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record