Show simple item record

dc.contributor.authorEnglert, Christoph
dc.contributor.authorGaller, Peter
dc.contributor.authorSpannowsky, Michael
dc.contributor.authorHarris, Philip Coleman
dc.date.accessioned2019-02-13T20:39:01Z
dc.date.available2019-02-13T20:39:01Z
dc.date.issued2019-01
dc.date.submitted2018-08
dc.identifier.issn1434-6044
dc.identifier.issn1434-6052
dc.identifier.urihttp://hdl.handle.net/1721.1/120361
dc.description.abstractMachine Learning is a powerful tool to reveal and exploit correlations in a multi-dimensional parameter space. Making predictions from such correlations is a highly non-trivial task, in particular when the details of the underlying dynamics of a theoretical model are not fully understood. Using adversarial networks, we include a priori known sources of systematic and theoretical uncertainties during the training. This paves the way to a more reliable event classification on an event-by-event basis, as well as novel approaches to perform parameter fits of particle physics data. We demonstrate the benefits of the method explicitly in an example considering effective field theory extensions of Higgs boson production in association with jets.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Physicsen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-018-6511-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleMachine learning uncertainties with adversarial neural networksen_US
dc.typeArticleen_US
dc.identifier.citationEnglert, Christoph, et al. “Machine Learning Uncertainties with Adversarial Neural Networks.” The European Physical Journal C, vol. 79, no. 1, Jan. 2019. © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorHarris, Philip Coleman
dc.relation.journalThe European Physical Journal Cen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-04T05:06:45Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsEnglert, Christoph; Galler, Peter; Harris, Philip; Spannowsky, Michaelen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8189-3741
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record