Show simple item record

dc.contributor.authorSchmahmann, Jeremy D.
dc.contributor.authorGuell Paradis, Xavier
dc.contributor.authorGoncalves, Mathias
dc.contributor.authorKaczmarzyk, Jakub
dc.contributor.authorGabrieli, John D. E.
dc.contributor.authorGhosh, Satrajit S
dc.date.accessioned2019-02-19T17:41:39Z
dc.date.available2019-02-19T17:41:39Z
dc.date.issued2019-01
dc.date.submitted2018-09
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/120480
dc.description.abstractGradient-based approaches to brain function have recently unmasked fundamental properties of brain organization. Diffusion map embedding analysis of resting-state fMRI data revealed a primary-to-transmodal axis of cerebral cortical macroscale functional organization. The same method was recently used to analyze resting-state data within the cerebellum, revealing for the first time a sensorimotor-fugal macroscale organization principle of cerebellar function. Cerebellar gradient 1 extended from motor to non-motor task-unfocused (default-mode network) areas, and cerebellar gradient 2 isolated task-focused processing regions. Here we present a freely available and easily accessible tool that applies this new knowledge to the topographical interpretation of cerebellar neuroimaging findings. LittleBrain illustrates the relationship between cerebellar data (e.g., volumetric patient study clusters, task activation maps, etc.) and cerebellar gradients 1 and 2. Specifically, LittleBrain plots all voxels of the cerebellum in a two-dimensional scatterplot, with each axis corresponding to one of the two principal functional gradients of the cerebellum, and indicates the position of cerebellar neuroimaging data within these two dimensions. This novel method of data mapping provides alternative, gradual visualizations that complement discrete parcellation maps of cerebellar functional neuroanatomy. We present application examples to show that LittleBrain can also capture subtle, progressive aspects of cerebellar functional neuroanatomy that would be difficult to visualize using conventional mapping techniques. Download and use instructions can be found at https://xaviergp.github.io/littlebrain.en_US
dc.description.sponsorshipla Caixa Foundationen_US
dc.description.sponsorshipMassachusetts General Hospital. Executive Committee On Research Fund for Medical Discovery Postdoctoral Fellowship Awarden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 EB020740)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P41 EB019936)en_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0210028en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.titleLittleBrain: A gradient-based tool for the topographical interpretation of cerebellar neuroimaging findingsen_US
dc.typeArticleen_US
dc.identifier.citationGuell, Xavier, Mathias Goncalves, Jakub R. Kaczmarzyk, John D. E. Gabrieli, Jeremy D. Schmahmann, and Satrajit S. Ghosh. “LittleBrain: A Gradient-Based Tool for the Topographical Interpretation of Cerebellar Neuroimaging Findings.” Edited by Daniel S. Margulies. PLOS ONE 14, no. 1 (January 16, 2019):en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Clinical Research Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Office of Digital Learningen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorGuell Paradis, Xavier
dc.contributor.mitauthorGoncalves, Mathias
dc.contributor.mitauthorKaczmarzyk, Jakub
dc.contributor.mitauthorGabrieli, John D. E.
dc.contributor.mitauthorGhosh, Satrajit S
dc.relation.journalPLOS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-19T14:17:14Z
dspace.orderedauthorsGuell, Xavier; Goncalves, Mathias; Kaczmarzyk, Jakub R.; Gabrieli, John D. E.; Schmahmann, Jeremy D.; Ghosh, Satrajit S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1158-5692
dc.identifier.orcidhttps://orcid.org/0000-0002-5312-6729
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record