Show simple item record

dc.contributor.authorPhillips, Dane J.
dc.contributor.authorHolliday, Samuel G.
dc.contributor.authorBravo-Abad, Jorge
dc.contributor.authorEveritt, Henry O.
dc.contributor.authorWang, Fan
dc.contributor.authorLee, Jeongwon
dc.contributor.authorChua, Song Liang
dc.contributor.authorJoannopoulos, John
dc.contributor.authorSoljacic, Marin
dc.contributor.authorJohnson, Steven G
dc.date.accessioned2019-02-19T19:58:27Z
dc.date.available2019-02-19T19:58:27Z
dc.date.issued2018-06
dc.date.submitted2018-06
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/120503
dc.description.abstractWe present both an innovative theoretical model and an experimental validation of a molecular gas optically pumped far-infrared (OPFIR) laser at 0.25 THz that exhibits 10× greater efficiency (39% of the Manley–Rowe limit) and 1,000× smaller volume than comparable commercial lasers. Unlike previous OPFIR-laser models involving only a few energy levels that failed even qualitatively to match experiments at high pressures, our ab initio theory matches experiments quantitatively, within experimental uncertainties with no free parameters, by accurately capturing the interplay of millions of degrees of freedom in the laser. We show that previous OPFIR lasers were inefficient simply by being too large and that high powers favor high pressures and small cavities. We believe that these results will revive interest in OPFIR laser as a powerful and compact source of terahertz radiation. Keywords: optically pumped far-infrared laser modeling; terahertz source; rotational population inversion; continuous wave gas laser; laseren_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-18-2-0048)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-13-D-0001)en_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1803261115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleA high-efficiency regime for gas-phase terahertz lasersen_US
dc.typeArticleen_US
dc.identifier.citationWang, Fan et al. “A High-Efficiency Regime for Gas-Phase Terahertz Lasers.” Proceedings of the National Academy of Sciences 115, 26 (June 2018): 6614–6619 © 2018 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorWang, Fan
dc.contributor.mitauthorLee, Jeongwon
dc.contributor.mitauthorChua, Song Liang
dc.contributor.mitauthorJoannopoulos, John
dc.contributor.mitauthorSoljacic, Marin
dc.contributor.mitauthorJohnson, Steven G
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-08T14:43:22Z
dspace.orderedauthorsWang, Fan; Lee, Jeongwon; Phillips, Dane J.; Holliday, Samuel G.; Chua, Song-Liang; Bravo-Abad, Jorge; Joannopoulos, John D.; Soljačić, Marin; Johnson, Steven G.; Everitt, Henry O.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5647-0632
dc.identifier.orcidhttps://orcid.org/0000-0002-7244-3682
dc.identifier.orcidhttps://orcid.org/0000-0002-7184-5831
dc.identifier.orcidhttps://orcid.org/0000-0001-7327-4967
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record