Show simple item record

dc.contributor.authorOhannessian, Mesrob I.
dc.contributor.authorMossel, Elchanan
dc.date.accessioned2019-02-20T16:44:58Z
dc.date.available2019-02-20T16:44:58Z
dc.date.issued2019-01
dc.date.submitted2018-11
dc.identifier.issn1099-4300
dc.identifier.urihttp://hdl.handle.net/1721.1/120514
dc.description.abstractThis paper shows that one cannot learn the probability of rare events without imposing further structural assumptions. The event of interest is that of obtaining an outcome outside the coverage of an i.i.d. sample from a discrete distribution. The probability of this event is referred to as the “missing mass”. The impossibility result can then be stated as: the missing mass is not distribution-free learnable in relative error. The proof is semi-constructive and relies on a coupling argument using a dithered geometric distribution. Via a reduction, this impossibility also extends to both discrete and continuous tail estimation. These results formalize the folklore that in order to predict rare events without restrictive modeling, one necessarily needs distributions with "heavy tails". Keywords: missing mass; rare events; Good-Turing; light tails; heavy tails; no free lunchen_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/e21010028en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleOn the Impossibility of Learning the Missing Massen_US
dc.typeArticleen_US
dc.identifier.citationMossel, Elchanan and Mesrob Ohannessian. "On the Impossibility of Learning the Missing Mass." Entropy 21, 1 (January 2019): 28 © 2019 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMossel, Elchanan
dc.relation.journalEntropyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-01-24T09:21:55Z
dspace.orderedauthorsMossel, Elchanan; Ohannessian, Mesroben_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record