Show simple item record

dc.contributor.authorLu, Haihao
dc.contributor.authorFreund, Robert Michael
dc.contributor.authorMirrokni Banadaki, Vahab Seyed
dc.date.accessioned2019-02-21T17:57:03Z
dc.date.available2019-02-21T17:57:03Z
dc.date.issued2018-07
dc.identifier.urihttp://hdl.handle.net/1721.1/120520
dc.description.abstractWe introduce and study two algorithms to accelerate greedy coordinate descent in theory and in practice: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Co-ordinate Descent (AGCD). On the theory side, our main results are for ASCD: We show that ASCD achieves 0(l/k[superscript 2]) convergence, and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side, while both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on most instances in our numerical experiments, we note that AGCD significantly outperforms the other two methods in our experiments, in spite of a lack of theoretical guarantees for this method. To complement this empirical finding for AGCD, we present an explanation why standard proof techniques for acceleration cannot work for AGCD, and we introduce a technical condition under which AGCD is guaranteed to have accelerated convergence. Finally, we confirm that this technical condition holds in our numerical experiments.en_US
dc.publisherProceedings of Machine Learning Researchen_US
dc.relation.isversionofhttp://proceedings.mlr.press/v80/lu18b.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAccelerating greedy coordinate descent methodsen_US
dc.typeArticleen_US
dc.identifier.citationLu, Haihao, Robert Freund, and Vahab Mirrokni. "Accelerating Greedy Coordinate Descent Methods." Proceedings of Machine Learning Research, 80 (2018): 3257-3266.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorLu, Haihao
dc.contributor.mitauthorFreund, Robert Michael
dc.contributor.mitauthorMirrokni Banadaki, Vahab Seyed
dc.relation.journalProceedings of Machine Learning Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-02-13T16:16:50Z
dspace.orderedauthorsLu, Haihao; Freund, Robert; Mirrokni, Vahaben_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5217-1894
dc.identifier.orcidhttps://orcid.org/0000-0002-1733-5363
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record