Show simple item record

dc.contributor.authorGallée, Hubert
dc.contributor.authorSprovieri, Francesca
dc.contributor.authorPirrone, Nicola
dc.contributor.authorHelmig, Detlev
dc.contributor.authorSavarino, Joël
dc.contributor.authorMagand, Olivier
dc.contributor.authorDommergue, Aurélien
dc.contributor.authorSong, Shaojie
dc.contributor.authorAngot, Helene Paule
dc.contributor.authorSelin, Noelle E
dc.date.accessioned2019-02-26T20:16:49Z
dc.date.available2019-02-26T20:16:49Z
dc.date.issued2018-11
dc.date.submitted2018-09
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttp://hdl.handle.net/1721.1/120548
dc.description.abstractDistinct diurnal and seasonal variations of mercury (Hg) have been observed in near-surface air at Concordia Station on the East Antarctic Plateau, but the processes controlling these characteristics are not well understood. Here, we use a box model to interpret the Hg0 (gaseous elemental mercury) measurements in thes year 2013. The model includes atmospheric Hg0 oxidation (by OH, O3, or bromine), surface snow HgII (oxidized mercury) reduction, and air-snow exchange, and is driven by meteorological fields from a regional climate model. The simulations suggest that a photochemically driven mercury diurnal cycle occurs at the air-snow interface in austral summer. The fast oxidation of Hg0 in summer may be provided by a two-step bromine-initiated scheme, which is favored by low temperature and high nitrogen oxides at Concordia. The summertime diurnal variations of Hg0 (peaking during daytime) may be confined within several tens of meters above the snow surface and affected by changing mixed layer depths. Snow re-emission of Hg0 is mainly driven by photoreduction of snow HgII in summer. Intermittent warming events and a hypothesized reduction of HgII occurring in snow in the dark may be important processes controlling the mercury variations in the non-summer period, although their relative importance is uncertain. The Br-initiated oxidation of Hg0 is expected to be slower at Summit Station in Greenland than at Concordia (due to their difference in temperature and levels of nitrogen oxides and ozone), which may contribute to the observed differences in the summertime diurnal variations of Hg0 between these two polar inland stations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant ACP-1053648)en_US
dc.publisherCopernicus Publicationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acp-18-15825-2018en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceCopernicusen_US
dc.titleUnderstanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling studyen_US
dc.typeArticleen_US
dc.identifier.citationSong, Shaojie et al. “Understanding Mercury Oxidation and Air–snow Exchange on the East Antarctic Plateau: a Modeling Study.” Atmospheric Chemistry and Physics 18, 21 (November 2018): 15825–15840 © 2018 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.mitauthorSong, Shaojie
dc.contributor.mitauthorAngot, Helene Paule
dc.contributor.mitauthorSelin, Noelle E
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-25T12:36:32Z
dspace.orderedauthorsSong, Shaojie; Angot, Hélène; Selin, Noelle E.; Gallée, Hubert; Sprovieri, Francesca; Pirrone, Nicola; Helmig, Detlev; Savarino, Joël; Magand, Olivier; Dommergue, Aurélienen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6395-7422
dc.identifier.orcidhttps://orcid.org/0000-0002-6396-5622
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record