Shear sound of two-dimensional Fermi liquids
Author(s)
Khoo, Jun Yong; Sodemann Villadiego, Inti A.
DownloadPhysRevB.99.075434.pdf (503.0Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We study the appearance of a sharp collective mode which features transverse current fluctuations within the bosonization approach to interacting two-dimensional Fermi liquids. This mode is analogous to the shear sound modes in elastic media, and, unlike the conventional zero sound mode, it is damped in weakly interacting Fermi liquids and only separates away from the particle-hole continuum when the quasiparticle mass becomes twice the transport mass m* ≳ 2m. The shear sound should be present in a large class of interacting charged and neutral Fermi liquids especially those proximate to critical points where the quasiparticle mass diverges. In metals this mode remains linearly dispersing in the presence of the long-ranged Coulomb force, unlike the conventional zero sound mode which becomes the plasma mode. We also detail a quick path between bosonization and classical Landau's Fermi liquid theory by constructing a mapping between the solutions of the classical kinetic equation and the quantized bosonic eigenmodes. By further mapping the kinetic equation into a one-dimensional tight-binding model we solve for the entire spectrum of collective and incoherent particle-hole excitations of Fermi liquids with nonzero F₀ and F₁ Landau parameters.
Date issued
2019-02Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review B
Publisher
American Physical Society
Citation
Khoo, Jun Yong et al. "Shear sound of two-dimensional Fermi liquids." Physical Review B 99, 7 (February 2019): 075434 © 2019 American Physical Society
Version: Final published version
ISSN
2469-9950
2469-9969