Show simple item record

dc.contributor.authorIlten, P.
dc.contributor.authorWilliams, M.
dc.contributor.authorYang, Y.
dc.contributor.authorIlten, Philip J
dc.contributor.authorWilliams, Michael
dc.contributor.authorYang, Yang
dc.date.accessioned2019-03-01T16:40:11Z
dc.date.available2019-03-01T16:40:11Z
dc.date.issued2017-04
dc.date.submitted2016-11
dc.identifier.issn1748-0221
dc.identifier.urihttp://hdl.handle.net/1721.1/120587
dc.description.abstractMonte Carlo event generators contain a large number of parameters that must be determined by comparing the output of the generator with experimental data. Generating enough events with a fixed set of parameter values to enable making such a comparison is extremely CPU intensive, which prohibits performing a simple brute-force grid-based tuning of the parameters. Bayesian optimization is a powerful method designed for such black-box tuning applications. In this article, we show that Monte Carlo event generator parameters can be accurately obtained using Bayesian optimization and minimal expert-level physics knowledge. A tune of the PYTHIA 8 event generator using e⁺e⁻ events, where 20 parameters are optimized, can be run on a modern laptop in just two days. Combining the Bayesian optimization approach with expert knowledge should enable producing better tunes in the future, by making it faster and easier to study discrepancies between Monte Carlo and experimental data.en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC0010497)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-FG02-94ER40818)en_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1748-0221/12/04/P04028en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEvent generator tuning using Bayesian optimizationen_US
dc.typeArticleen_US
dc.identifier.citationIlten, P. et al. “Event Generator Tuning Using Bayesian Optimization.” Journal of Instrumentation 12, 4 (April 2017): P04028–P04028 © 2017 IOP Publishing Ltden_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Scienceen_US
dc.contributor.mitauthorIlten, Philip J
dc.contributor.mitauthorWilliams, Michael
dc.contributor.mitauthorYang, Yang
dc.relation.journalJournal of Instrumentationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-06T15:24:22Z
dspace.orderedauthorsIlten, P.; Williams, M.; Yang, Y.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5534-1732
dc.identifier.orcidhttps://orcid.org/0000-0001-8285-3346
dc.identifier.orcidhttps://orcid.org/0000-0002-0025-5914
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record