Show simple item record

dc.contributor.authorRamadi, Khalil
dc.contributor.authorDagdeviren, Canan
dc.contributor.authorSpencer, Kevin C
dc.contributor.authorJoe, Pauline
dc.contributor.authorCotler, Max Joseph
dc.contributor.authorRousseau, Erin Byrne
dc.contributor.authorNunez Lopez, Carlos
dc.contributor.authorGraybiel, Ann M
dc.contributor.authorLanger, Robert S
dc.contributor.authorCima, Michael J.
dc.date.accessioned2019-03-01T18:55:24Z
dc.date.available2019-03-01T18:55:24Z
dc.date.issued2018-07
dc.date.submitted2018-03
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/120597
dc.description.abstractDirect delivery of fluid to brain parenchyma is critical in both research and clinical settings. This is usually accomplished through acutely inserted cannulas. This technique, however, results in backflow and significant dispersion away from the infusion site, offering little spatial or temporal control in delivering fluid. We present an implantable, MRI-compatible, remotely controlled drug delivery system for minimally invasive interfacing with brain microstructures in freely moving animals. We show that infusions through acutely inserted needles target a region more than twofold larger than that of identical infusions through chronically implanted probes due to reflux and backflow. We characterize the dynamics of in vivo infusions using positron emission tomography techniques. Volumes as small as 167 nL of copper-64 and fludeoxyglucose labeled agents are quantified. We further demonstrate the importance of precise drug volume dosing to neural structures to elicit behavioral effects reliably. Selective modulation of the substantia nigra, a critical node in basal ganglia circuitry, via muscimol infusion induces behavioral changes in a volume-dependent manner, even when the total dose remains constant. Chronic device viability is confirmed up to 1-y implantation in rats. This technology could potentially enable precise investigation of neurological disease pathology in preclinical models, and more efficacious treatment in human patients. Keywords: brain; drug delivery; substantia nigra; neural implant; PETen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 EB016101)en_US
dc.description.sponsorshipNational Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant R01 EB016101)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant P30-CA14051)en_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/PNAS.1804372115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleFocal, remote-controlled, chronic chemical modulation of brain microstructuresen_US
dc.typeArticleen_US
dc.identifier.citationRamadi, Khalil B. et al. “Focal, Remote-Controlled, Chronic Chemical Modulation of Brain Microstructures.” Proceedings of the National Academy of Sciences 115, 28 (June 2018): 7254–7259 © 2018 National Academy of Sciencesen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorRamadi, Khalil
dc.contributor.mitauthorDagdeviren, Canan
dc.contributor.mitauthorSpencer, Kevin C
dc.contributor.mitauthorJoe, Pauline
dc.contributor.mitauthorCotler, Max Joseph
dc.contributor.mitauthorRousseau, Erin Byrne
dc.contributor.mitauthorNunez Lopez, Carlos
dc.contributor.mitauthorGraybiel, Ann M
dc.contributor.mitauthorLanger, Robert S
dc.contributor.mitauthorCima, Michael J
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-08T18:06:00Z
dspace.orderedauthorsRamadi, Khalil B.; Dagdeviren, Canan; Spencer, Kevin C.; Joe, Pauline; Cotler, Max; Rousseau, Erin; Nunez-Lopez, Carlos; Graybiel, Ann M.; Langer, Robert; Cima, Michael J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5864-2386
dc.identifier.orcidhttps://orcid.org/0000-0002-2032-792X
dc.identifier.orcidhttps://orcid.org/0000-0002-7963-8706
dc.identifier.orcidhttps://orcid.org/0000-0002-2306-7537
dc.identifier.orcidhttps://orcid.org/0000-0002-4326-7720
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dc.identifier.orcidhttps://orcid.org/0000-0003-2379-6139
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record