MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Effect of Stress on Battery-Electrode Capacity

Author(s)
Sheldon, Brian W.; Bucci, Giovanna; Swamy, Tushar; Bishop, Sean; Chiang, Yet-Ming; Carter, W Craig; ... Show more Show less
Thumbnail
DownloadJ. Electrochem. Soc.-2017-Bucci-A645-54.pdf (1.196Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Constraint-induced stresses develop during Li-ion battery cycling, because anode and cathode materials expand and contract as they intercalate or de-intercalate Li. We show in this manuscript that these stresses, in turn, can significantly modify the maximum capacity of the device at a given cell voltage. All-solid-state batteries impose an external elastic constraint on electrode particles, promoting the development of large stresses during cycling. We employ an analytic and a finite element model to study this problem, and we predict that the electrode's capacity decreases with increasing matrix stiffness. In the case of lithiation of a silicon composite electrode, we calculate 64% of capacity loss for stresses up to 2 GPa. According to our analysis, increasing the volume ratio of Si beyond 25-30% has the effect of decreasing the total capacity, because of the interaction between neighboring particles. The stress-induced voltage shift depends on the chemical expansion of the active material and on the constraint-induced stress. However, even small voltage changes may result in very large capacity shift if the material is characterized by a nearly flat open-circuit potential curve. Keywords: Finite element modeling; Li-ion battery; Solid electrolyte; Stress-potential coupling; Thermodynamics
Date issued
2017-02
URI
http://hdl.handle.net/1721.1/120733
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of The Electrochemical Society
Publisher
Electrochemical Society
Citation
Bucci, Giovanna et al. “The Effect of Stress on Battery-Electrode Capacity.” Journal of The Electrochemical Society 164, 4 (2017): A645–A654 © 2017 Electrochemical Society
Version: Final published version
ISSN
0013-4651
1945-7111

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.