MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Behavior-based planning and prosecution architecture for Autonomous Underwater Vehicles in Ocean Observatories

Author(s)
Balasuriya, Arjuna Prabhath; Petillo, Stephanie Marie; Schmidt, Henrik; Benjamin, Michael
Thumbnail
DownloadBalasuriya_etal_IEEE_OCEANS_2010_Sydney.pdf (1.007Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper discusses the autonomy framework proposed for the mobile instruments such as Autonomous Underwater Vehicles (AUVs) and gliders. Paper focuses on the challenges faced by these clusters of mobile platform in executive tasks such as adaptive sampling in the hostile underwater environment. Collaborations between these mobile instruments are essential to capture the environmental changes and track them for time-series analysis. This paper looks into the challenges imposed by the underwater communication infrastructure and presents the nested autonomy architecture as a solution to overcome these challenges. The autonomy architecture is separated from the low-level control architecture of these instruments, which is called the `backseat driver'. The back-seat driver paradigm is implemented on the Mission Oriented Object Suite (MOOS) developed at MIT. The autonomy is achieved by generating multiple behaviors (multiple objective functions) linked to the internal state of the platform as well as the environment. Optimization engine called the MOOS-IvP is used to pick the best action for the given instance based on the mission at hand. At sea operational scenarios and results are presented to demonstrate the proposed autonomy architecture for Ocean Observatory Initiative (OOI). Keywords: Autonomous Underwater Vehicles (AUVs), Underwater Gliders, MOOS, MOOS DB, MOOS-IvP, OOI-CI, behavior-based autonomy
Date issued
2010-10
URI
http://hdl.handle.net/1721.1/120741
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
OCEANS'10 IEEE SYDNEY
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Balasuriya, Arjuna, Stephanie Petillo, Henrik Schmidt, and Michael Benjamin. “Behavior-Based Planning and Prosecution Architecture for Autonomous Underwater Vehicles in Ocean Observatories.” OCEANS’10 IEEE SYDNEY, 24-27 October, 2010. Sydney, NSW, Australia, IEEE, 2010.
Version: Author's final manuscript
ISBN
978-1-4244-5221-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.