Design and Preliminary Testing of a Prototype for Evaluating Lower Leg Trajectory Error as an Optimization Metric for Prosthetic Feet
Author(s)
Olesnavage, Kathryn; Winter, Amos G.
Downloadv05at07a038-detc2016-60565.pdf (1.778Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
This work presents the design and preliminary testing of a prosthetic foot prototype intended for evaluating a novel design objective for passive prosthetic feet, the Lower Leg Trajectory Error (LLTE). Thus far, all work regarding LLTE has been purely theoretical. The next step is to perform extensive clinical testing. An initial prototype consisting of rotational ankle and metatarsal joints with constant rotational stiffness was optimized and built, but at 2 kg it proved too heavy to use in clinical testing. A new conceptual foot architecture intended to reduce the weight of the final prototype is presented and optimized for LLTE. This foot consists of a rotational ankle joint with constant stiffness of 6.1 N·m/deg, a rigid structure extending 0.08 m from the ankle-knee axis, and a cantilever beam forefoot with bending stiffness 5.4 N·m2. A prototype was built using machined delrin for the rigid structure, three parallel extension springs offset along a constant radius cam from a pin joint ankle, and machined nylon as the beam forefoot. In preliminary testing, it was determined that, despite efforts to minimize weight and size, this particular design was still too heavy and bulky as a result of the extension springs to be used in extensive clinical testing. Future work will focus on reducing the weight further by replacing linear extension springs with flexural elements before commencing with the clinical study.
Date issued
2016-08Department
MIT-SUTD Collaboration; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Volume 5A: 40th Mechanisms and Robotics Conference
Publisher
ASME International
Citation
Olesnavage, Kathryn M., and Amos G. Winter. “Design and Preliminary Testing of a Prototype for Evaluating Lower Leg Trajectory Error as an Optimization Metric for Prosthetic Feet.” Volume 5A: 40th Mechanisms and Robotics Conference (August 21, 2016).
Version: Final published version
ISBN
978-0-7918-5015-2