MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore

Author(s)
Jiang, Shan; Ferreira Jr, Joseph; Gonzalez, Marta C.
Thumbnail
Downloadieee-tbd-2015-12-0163_author_version.pdf (25.28Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this study, with Singapore as an example, we demonstrate how we can use mobile phone call detail record (CDR) data, which contains millions of anonymous users, to extract individual mobility networks comparable to the activity-based approach. Such an approach is widely used in the transportation planning practice to develop urban micro simulations of individual daily activities and travel; yet it depends highly on detailed travel survey data to capture individual activity-based behavior. We provide an innovative data mining framework that synthesizes the state-of-the-art techniques in extracting mobility patterns from raw mobile phone CDR data, and design a pipeline that can translate the massive and passive mobile phone records to meaningful spatial human mobility patterns readily interpretable for urban and transportation planning purposes. With growing ubiquitous mobile sensing, and shrinking labor and fiscal resources in the public sector globally, the method presented in this research can be used as a low-cost alternative for transportation and planning agencies to understand the human activity patterns in cities, and provide targeted plans for future sustainable development.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/120769
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Urban Studies and Planning; Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Journal
IEEE Transactions on Big Data
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Jiang, Shan, Joseph Ferreira, and Marta C. Gonzalez. “Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore.” IEEE Transactions on Big Data 3, no. 2 (June 1, 2017): 208–219.
Version: Author's final manuscript
ISSN
2332-7790

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.