MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Validating a Method for Turbocharging Single Cylinder Four Stroke Engines

Author(s)
Buchman, Michael R.; Winter, Amos G.
Thumbnail
Downloadv003t01a022-detc2016-59593.pdf (2.905Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This paper presents a method for turbocharging single cylinder four stroke internal combustion engines, an experimental setup used to test this method, and the results from this experiment. A turbocharged engine has better fuel economy, cost efficiency, and power density than an equivalently sized, naturally aspirated engine. Most multi-cylinder diesel engines are turbocharged for this reason. However, due to the timing mismatch between the exhaust stroke (when the turbocharger is powered) and the intake stroke (when the engine intakes air), turbocharging is not used in commercial single cylinder engines. Single cylinder engines are ubiquitous in developing world offgrid power applications such as tractors, generators, and water pumps due to their low cost. Turbocharging these engines could give users a lower cost and more fuel efficient engine. The proposed solution is to add an air capacitor, in the form of a large volume intake manifold, between the turbocharger compressor and the engine intake to smooth out the flow. This research builds on a previous theoretical study where the turbocharger, capacitor, and engine system were modeled analytically. In order to validate the theoretical model, an experimental setup was created around a single cylinder four stroke diesel engine. A typical developing world engine was chosen and was fitted with a turbocharger. A series of sensors were added to this engine to measure pressure, temperature, and power output. Our tests showed that a turbocharger and air capacitor could be successfully fitted to a single cylinder engine to increase intake air density by forty-three percent and peak power output by twenty-nine percent.
Date issued
2016-08
URI
http://hdl.handle.net/1721.1/120774
Department
MIT-SUTD Collaboration; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Volume 3: 18th International Conference on Advanced Vehicle Technologies; 13th International Conference on Design Education; 9th Frontiers in Biomedical Devices
Publisher
ASME International
Citation
Buchman, Michael R., and Amos G. Winter. “Validating a Method for Turbocharging Single Cylinder Four Stroke Engines.” Volume 3: 18th International Conference on Advanced Vehicle Technologies; 13th International Conference on Design Education; 9th Frontiers in Biomedical Devices (August 21, 2016).
Version: Final published version
ISBN
978-0-7918-5013-8

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.