Show simple item record

dc.contributor.authorShi, Pixu
dc.contributor.authorMikkelsen, Mark E.
dc.contributor.authorSmall, Dylan S.
dc.contributor.authorFogarty, Colin B
dc.date.accessioned2019-03-07T18:51:02Z
dc.date.available2019-03-07T18:51:02Z
dc.date.issued2017-05
dc.date.submitted2015-04
dc.identifier.issn0162-1459
dc.identifier.issn1537-274X
dc.identifier.urihttp://hdl.handle.net/1721.1/120813
dc.description.abstractWe present methods for conducting hypothesis testing and sensitivity analyses for composite null hypotheses in matched observational studies when outcomes are binary. Causal estimands discussed include the causal risk difference, causal risk ratio, and the effect ratio. We show that inference under the assumption of no unmeasured confounding can be performed by solving an integer linear program, while inference allowing for unmeasured confounding of a given strength requires solving an integer quadratic program. Through simulation studies and data examples, we demonstrate that our formulation allows these problems to be solved in an expedient manner even for large datasets and for large strata. We further exhibit that through our formulation, one can assess the impact of various assumptions about the potential outcomes on the performed inference. R scripts are provided that implement our methods. Supplementary materials for this article are available online. Keywords: Causal inference; Causal risk; Effect ratio; Integer programming; Sensitivity analysisen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/01621459.2016.1138865en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleRandomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studiesen_US
dc.typeArticleen_US
dc.identifier.citationFogarty, Colin B. et al. “Randomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studies.” Journal of the American Statistical Association 112, 517 (January 2017): 321–331 © 2017 American Statistical Associationen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorFogarty, Colin B
dc.relation.journalJournal of the American Statistical Associationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-12T16:50:47Z
dspace.orderedauthorsFogarty, Colin B.; Shi, Pixu; Mikkelsen, Mark E.; Small, Dylan S.en_US
dspace.embargo.termsNen_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record