MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Computational Framework for Multivariate Convex Regression and Its Variants

Author(s)
Choudhury, Arkopal; Iyengar, Garud; Sen, Bodhisattva; Mazumder, Rahul
Thumbnail
Download1509.08165.pdf (1.104Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We study the nonparametric least squares estimator (LSE) of a multivariate convex regression function. The LSE, given as the solution to a quadratic program with O(n²) linear constraints (n being the sample size), is difficult to compute for large problems. Exploiting problem specific structure, we propose a scalable algorithmic framework based on the augmented Lagrangian method to compute the LSE. We develop a novel approach to obtain smooth convex approximations to the fitted (piecewise affine) convex LSE and provide formal bounds on the quality of approximation. When the number of samples is not too large compared to the dimension of the predictor, we propose a regularization scheme—Lipschitz convex regression—where we constrain the norm of the subgradients, and study the rates of convergence of the obtained LSE. Our algorithmic framework is simple and flexible and can be easily adapted to handle variants: estimation of a nondecreasing/nonincreasing convex/concave (with or without a Lipschitz bound) function. We perform numerical studies illustrating the scalability of the proposed algorithm—on some instances our proposal leads to more than a 10,000-fold improvement in runtime when compared to off-the-shelf interior point solvers for problems with n = 500. Keywords: Augmented Lagrangian method; Lipschitz convex regression; Non parametric least squares estimator; Scalable quadratic programming; Smooth convex regression
Date issued
2018-08
URI
http://hdl.handle.net/1721.1/120818
Department
Sloan School of Management
Journal
Journal of the American Statistical Association
Publisher
Taylor & Francis
Citation
Mazumder, Rahul et al. “A Computational Framework for Multivariate Convex Regression and Its Variants.” Journal of the American Statistical Association (January 2018): 1–14 © 2018 American Statistical Association
Version: Original manuscript
ISSN
0162-1459
1537-274X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.