Show simple item record

dc.contributor.authorAnnavarapu, Rama Kishore
dc.contributor.authorSojoudi, Hossein
dc.contributor.authorKim, Sanha
dc.contributor.authorHart, Anastasios John
dc.contributor.authorWang, Minghui
dc.date.accessioned2019-03-12T19:38:35Z
dc.date.available2019-03-12T19:38:35Z
dc.date.issued2019-01
dc.date.submitted2018-05
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/120937
dc.description.abstractUnderstanding wettability and mechanisms of wetting transition are important for design and engineering of superhydrophobic surfaces. There have been numerous studies on the design and fabrication of superhydrophobic and omniphobic surfaces and on the wetting transition mechanisms triggered by liquid evaporation. However, there is a lack of a universal method to examine wetting transition on rough surfaces. Here, we introduce force zones across the droplet base and use a local force balance model to explain wetting transition on engineered nanoporous microstructures, utilizing a critical force per unit length (FPL) value. For the first time, we provide a universal scale using the concept of the critical FPL value which enables comparison of various superhydrophobic surfaces in terms of preventing wetting transition during liquid evaporation. In addition, we establish the concept of contact line-fraction theoretically and experimentally by relating it to area-fraction, which clarifies various arguments about the validity of the Cassie-Baxter equation. We use the contact line-fraction model to explain the droplet contact angles, liquid evaporation modes, and depinning mechanism during liquid evaporation. Finally, we develop a model relating a droplet curvature to conventional beam deflection, providing a framework for engineering pressure stable superhydrophobic surfaces.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41598-018-37093-6en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceScientific Reportsen_US
dc.titleExplaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fractionen_US
dc.typeArticleen_US
dc.identifier.citationAnnavarapu, Rama Kishore, Sanha Kim, Minghui Wang, A. John Hart, and Hossein Sojoudi. “Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction.” Scientific Reports 9, no. 1 (January 23, 2019). © 2019 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKim, Sanha
dc.contributor.mitauthorHart, Anastasios John
dc.contributor.mitauthorWang, Minghui
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-15T15:50:28Z
dspace.orderedauthorsAnnavarapu, Rama Kishore; Kim, Sanha; Wang, Minghui; Hart, A. John; Sojoudi, Hosseinen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3548-6173
dc.identifier.orcidhttps://orcid.org/0000-0002-7372-3512
dc.identifier.orcidhttps://orcid.org/0000-0003-2609-4204
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record