Show simple item record

dc.contributor.authorEschenfeldt, Patrick Clark
dc.contributor.authorGamarnik, David
dc.date.accessioned2019-03-13T14:16:24Z
dc.date.available2019-03-13T14:16:24Z
dc.date.issued2018-02
dc.identifier.issn0364-765X
dc.identifier.issn1526-5471
dc.identifier.urihttp://hdl.handle.net/1721.1/120946
dc.description.abstractWe consider queueing systems with n parallel queues under a Join the Shortest Queue (JSQ) policy in the Halfin-Whitt heavy-traffic regime. We use the martingale method to prove that a scaled process counting the number of idle servers and queues of length exactly two weakly converges to a two-dimensional reflected Ornstein-Uhlenbeck process, while processes counting longer queues converge to a deterministic system decaying to zero in constant time. This limiting system is comparable to that of the traditional Halfin-Whitt model, but there are key differences in the queueing behavior of the JSQ model. In particular, only a vanishing fraction of customers will have to wait, but those who do incur a constant order waiting time. Keywords: queueing theory; parallel queues; diffusion modelsen_US
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/MOOR.2017.0887en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleJoin the Shortest Queue with Many Servers. The Heavy-Traffic Asymptoticsen_US
dc.typeArticleen_US
dc.identifier.citationEschenfeldt, Patrick and David Gamarnik. “Join the Shortest Queue with Many Servers. The Heavy-Traffic Asymptotics.” Mathematics of Operations Research 43, 3 (August 2018): 867–886 © 2018 INFORMSen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorEschenfeldt, Patrick Clark
dc.contributor.mitauthorGamarnik, David
dc.relation.journalMathematics of Operations Researchen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-02-13T17:59:33Z
dspace.orderedauthorsEschenfeldt, Patrick; Gamarnik, Daviden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4865-7645
dc.identifier.orcidhttps://orcid.org/0000-0001-8898-8778
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record