Show simple item record

dc.contributor.authorAthanassoulis, A. G.
dc.contributor.authorAthanassoulis, G. A.
dc.contributor.authorSapsis, Themistoklis P.
dc.date.accessioned2019-03-14T18:31:27Z
dc.date.available2019-03-14T18:31:27Z
dc.date.issued2017-08
dc.date.submitted2017-03
dc.identifier.issn2198-6444
dc.identifier.issn2198-6452
dc.identifier.urihttp://hdl.handle.net/1721.1/120965
dc.description.abstractIn this paper, we model Rogue Waves as localized instabilities emerging from homogeneous and stationary background wavefields, under NLS dynamics. This is achieved in two steps: given any background Fourier spectrum P(k), we use the Wigner transform and Penrose’s method to recover spatially periodic unstable modes, which we call unstable Penrose modes. These can be seen as generalized Benjamin–Feir modes, and their parameters are obtained by resolving the Penrose condition, a system of nonlinear equations involving P(k). Moreover, we show how the superposition of unstable Penrose modes can result in the appearance of localized unstable modes. By interpreting the appearance of an unstable mode localized in an area not larger than a reference wavelength λ0 as the emergence of a Rogue Wave, a criterion for the emergence of Rogue Waves is formulated. Our methodology is applied to δ spectra, where the standard Benjamin–Feir instability is recovered, and to more general spectra. In that context, we present a scheme for the numerical resolution of the Penrose condition and estimate the sharpest possible localization of unstable modes. Keywords: Rogue Waves; Wigner equation; Nonlinear Schrodinger equation; Penrose modes; Penrose conditionen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/S40722-017-0095-5en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringeren_US
dc.titleLocalized instabilities of the Wigner equation as a model for the emergence of Rogue Wavesen_US
dc.typeArticleen_US
dc.identifier.citationAthanassoulis, A. G. et al. “Localized Instabilities of the Wigner Equation as a Model for the Emergence of Rogue Waves.” Journal of Ocean Engineering and Marine Energy 3, 4 (August 2017): 353–372 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorSapsis, Themistoklis P.
dc.relation.journalJournal of Ocean Engineering and Marine Energyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-12-18T14:17:35Z
dspace.orderedauthorsAthanassoulis, A. G.; Athanassoulis, G. A.; Sapsis, T. P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0302-0691
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record