Show simple item record

dc.contributor.authorWasmuht, D. F.
dc.contributor.authorSpaak, E.
dc.contributor.authorStokes, M. G.
dc.contributor.authorBuschman, Timothy J
dc.contributor.authorMiller, Earl K
dc.date.accessioned2019-03-19T12:17:49Z
dc.date.available2019-03-19T12:17:49Z
dc.date.issued2018-08
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/121035
dc.description.abstractWorking memory (WM) is characterized by the ability to maintain stable representations over time; however, neural activity associated with WM maintenance can be highly dynamic. We explore whether complex population coding dynamics during WM relate to the intrinsic temporal properties of single neurons in lateral prefrontal cortex (lPFC), the frontal eye fields (FEF), and lateral intraparietal cortex (LIP) of two monkeys (Macaca mulatta). We find that cells with short timescales carry memory information relatively early during memory encoding in lPFC; whereas long-timescale cells play a greater role later during processing, dominating coding in the delay period. We also observe a link between functional connectivity at rest and the intrinsic timescale in FEF and LIP. Our results indicate that individual differences in the temporal processing capacity predict complex neuronal dynamics during WM, ranging from rapid dynamic encoding of stimuli to slower, but stable, maintenance of mnemonic information.en_US
dc.description.sponsorshipBiotechnology and Biological Sciences Research Council (Great Britain) (BB/M010732/1)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-14-1-0681)en_US
dc.description.sponsorshipNational Institute of Mental Health (U.S.) (R00MH092715)en_US
dc.description.sponsorshipNational Institute of Mental Health (U.S.) (R37MH087027)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Picower Innovation Funden_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (grant N00014-16-1-2832)en_US
dc.description.sponsorshipNational Institute for Health Research (Great Britain). Wellcome Trust (203139/Z/16/Z)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-05961-4en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleIntrinsic neuronal dynamics predict distinct functional roles during working memoryen_US
dc.typeArticleen_US
dc.identifier.citationWasmuht, D. F., E. Spaak, T. J. Buschman, E. K. Miller, and M. G. Stokes. “Intrinsic Neuronal Dynamics Predict Distinct Functional Roles During Working Memory.” Nature Communications 9, no. 1 (August 29, 2018).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorBuschman, Timothy J
dc.contributor.mitauthorMiller, Earl K
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-04T14:30:15Z
dspace.orderedauthorsWasmuht, D. F.; Spaak, E.; Buschman, T. J.; Miller, E. K.; Stokes, M. G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1298-2761
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record